Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
January 10, 2023

Exercises for "Decision Procedures for Verification"
 Exercise sheet 10

Exercise 10.1: (4 P)
(I) Let F_{1} be the following conjunction (in linear rational arithmetic $L I(\mathbb{Q})$):

$$
F_{1}: \quad x_{1}+x_{2}+2 x_{3}=2 \wedge x_{1}+x_{3}+\frac{1}{5}<0 \wedge x_{2}-x_{3} \leq \frac{1}{2} \wedge x_{1}+5 x_{3} \leq 5
$$

Check the satisfiability of F_{1} using the Fourier-Motzking method for quantifier elimination for the formula $\exists x_{3} \exists x_{2} \exists x_{1} F_{1}$.
(II) Consider the following formulae (in linear rational arithmetic $L I(\mathbb{Q})$):

$$
\begin{aligned}
& F_{2}: \quad \exists x \forall y \exists z(y>0 \vee(x+y-z<0 \wedge x+y+z<0)) \\
& F_{3}: \quad \forall x \exists y \exists z(2 x-y>0 \wedge 2 y-z>0 \wedge z-y \geq 2 \wedge x-y<0 \wedge y<0)
\end{aligned}
$$

Check whether F_{2} and F_{3} are valid or satisfiable using the Fourier-Motzkin method for quantifier elimination.

Hint: You can eliminate the quantifiers one after the other, starting with the innermost quantifier. To eliminate universal quantifiers you can proceed as follows:

- use the equivalence: $\forall x G(x) \equiv \neg \exists x \neg G(x)$;
- compute a DNF for $\neg G(x)$, i.e. find conjunctions of literals G_{1}, \ldots, G_{k} such that $\neg G(x) \equiv G_{1} \vee \cdots \vee G_{k}$;
$-\neg \exists x \neg G(x) \equiv \neg \exists x\left(G_{1} \vee \cdots \vee G_{n}\right) \equiv \neg\left(\exists x G_{1} \vee \cdots \vee \exists x G_{n}\right)$;
- apply the Fourier-Motzkin method for quantifier elimination for $\exists x G_{1}, \ldots, \exists x G_{n}$.

Exercise 10.2: ($2 P$)
Let F_{1} be the following conjunction (in linear rational arithmetic $L I(\mathbb{Q})$):

$$
F_{1}: \quad x_{1}+x_{2}+2 x_{3}=2 \wedge x_{1}+x_{3}+\frac{1}{5}<0 \wedge x_{2}-x_{3} \leq \frac{1}{2} \wedge x_{1}+5 x_{3} \leq 5
$$

Check the satisfiability of F_{1} using the Loos-Weispfenning method for quantifier elimination.

Please submit your solution until Tuesday, January 17, 2023 at 17:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities: Use the directory Homework 10 in OLAT;

