Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

November 7, 2022

Exercises for "Decision Procedures for Verification"
 Exercise sheet 3

Exercise 3.1: (2 P)
Assume $P \succ Q \succ R$. Let N be the following set of clauses:

```
(1) \(\quad \neg R \vee P\)
(2) \(\neg Q \vee \neg Q \vee \neg P\)
(3) \(\quad Q\)
(4) \(\quad R \vee P\)
```

Let S be the selection function which selects $\neg R$ in clause (1) and both occurrences of $\neg Q$ in clause (2).

Use the ordered resolution calculus with selection $\operatorname{Res}_{S}^{\succ}$ described in the lecture for checking the satisfiability of the set N of clauses.

Exercise 3.2: (2 P)
A propositional Horn clause is a clause which has at most one positive literal.
(Example: $\quad \neg P \vee Q \vee \neg R, \neg P \vee \neg R$ and Q are Horn clauses,
whereas $\neg P \vee Q \vee R$ and $Q \vee R$ are not Horn clauses.)
Prove: Every set H of clauses with the following properties:
(i) H consists only of Horn clauses;
(ii) Every clause in H contains at least one negative literal;
is satisfiable.

Exercise 3.3: (5 P)
Let H be a set of propositional Horn clauses. The size of H is the number of all literals which occur in H. Prove that the resolution calculus $\operatorname{Res}_{S}^{\succ}$ (for a suitable selection function S) can check the satisfiability of H in time polynomial in the size of H.

Hint: With which choice of the selection function can one model the marking algorithm discussed in the lecture "Logik für Informatiker"?

Supplementary question (will be discussed during the exercise session):
Can you give an algorithm for check the satisfiability of H in time linear in the size of H ?

Exercise 3.4: (2 P)
Use a DPLL procedure to find a model of each of the following formulae, or prove that the particular formula has no model:
(1) $(P \vee \neg Q) \wedge(\neg P \vee Q) \wedge(Q \vee \neg R) \wedge(\neg Q \vee \neg R)$
(2) $(P \vee Q \vee \neg R) \wedge(P \vee \neg Q) \wedge(P \vee Q \vee R) \wedge(R \vee Q) \wedge(R \vee \neg Q) \wedge(\neg P \vee \neg R) \wedge \neg U$

Please submit your solution until Tuesday, November 15, 2022 at 17:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- Use the Homework 03 folder in OLAT

