Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
December 20, 2022

Exercises for "Decision Procedures for Verification"
 Exercise sheet 8

Exercise 8.1: (2 P)
To which of the classes discussed in the lecture (the Bernays-Schönfinkel class, the Ackermann class or the monadic class) do the following formulae belong:
(1) $\exists y \forall x \quad((p(x) \vee r(x, y)) \wedge q(y))$
(2) $\forall x \exists y \forall z \exists u((p(x) \vee q(y)) \wedge(q(y) \vee p(u))$
(3) $\exists z \forall x \exists y(p(x) \vee q(y)) \wedge q(z)$
(4) $\exists x \forall y(P(x) \vee R(y)) \wedge Q(y)$

Note that they can be in more than one, or in none of the classes above.

Exercise 8.2: (4 P)
Let ϕ be the following (ground) formula over the signature $\Sigma=(\{f / 1, c / 0, d / 0\},\{\approx\})$:

$$
f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not \approx f(c)
$$

(1) Compute $F L A T(\phi)$ (the formula obtained by recursively replacing, in a bottom-up fashion, any term of the form $f\left(c^{\prime}\right)$, where c^{\prime} is a constant, with a new constant).
(2) Compute $F C(\phi)$ (the set of functional consistency axioms associated with the flattening above):

$$
F C(\phi)=\left\{c_{1} \approx c_{2} \rightarrow d_{1} \approx d_{2} \mid d_{i} \text { is introduced as an abbreviation for } f\left(c_{i}\right)\right\}
$$

(3) Check whether $F L A T(\phi) \wedge F C(\phi)$ is satisfiable.
(4) Is ϕ is satisfiable? Justify your answer.

Exercise 8.3: (6 P)

Check the satisfiability of the following ground formulae using the algorithm based on congruence closure presented in the lecture.
(1) $\phi_{1}=f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not \approx f(c)$.
(2) $\phi_{2}=f(f(c)) \approx f(c) \wedge f(c) \approx d \wedge f(d) \not \approx f(f(c))$.

Supplementary exercises:

Exercise 8.4: (3 P)

Prove the \Rightarrow part in the correctness proof of the algorithm for checking the validity of a conjunction of literals in UIF, under the assumption that an algorithm for computing the congruence closure of a set R of pairs of vertices in a graph G exists.

Let $\phi:=\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ be a ground formula. Let $G=(V, E)$ be the labelled directed graph constructed from ϕ as in the description of the congruence closure algorithm (Solution 3). Let $R=\left\{\left(v_{s_{i}}, v_{t_{i}}\right) \mid i \in\{1, \ldots, n\}\right\}$, and let R^{c} be the congruence closure of R.
(1) \mathcal{A} is a Σ-structure such that $\mathcal{A} \models \phi$. Prove that $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ implies that $\mathcal{A} \models s \approx t$.
(2) Assume that ϕ is satisfiable. Prove that $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$.

Hint: Use the fact that if $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ then there is a derivation for $\left(v_{s}, v_{t}\right) \in R^{c}$ in the calculus defined before; use induction on the length of derivation to show that $\mathcal{A} \models s \approx t$.

Exercise 8.5: (3 P)
Let F be a closed first-order formula with equality over a signature $\Sigma=(\Omega, \Pi)$. Let $\sim \notin \Omega$ be a new binary relation symbol (written as an infix operator). Let the set $E q(\Sigma)$ contain the formulas

$$
\begin{gathered}
\forall x(x \sim x) \\
\forall x, y(x \sim y \rightarrow y \sim x) \\
\forall x, y, z(x \sim y \wedge y \sim z \rightarrow x \sim z)
\end{gathered}
$$

and for every $f / n \in \Omega$ the formula

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{n} \sim y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

and for every $p / n \in \Pi$ the formula

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{n} \sim y_{n} \wedge p\left(x_{1}, \ldots, x_{n}\right) \rightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Let \tilde{F} be the formula that one obtains from F if every occurrence of the equality symbol \approx is replaced by the relation symbol \sim.
(a) Definition. A binary relation \sim on the support of a Σ-algebra satisfying all properties in $E q(\Sigma)$ is called a congruence relation.
Let \mathcal{A} be a model of $\tilde{F} \cup E q(\Sigma)$. Show that the interpretation $\sim_{\mathcal{A}}$ of \sim in \mathcal{A} is a congruence relation. (It is enough if you prove one of the properties of congruence relations, say symmetry; the other properties are proved analogously.)
(b) Let \mathcal{A} be a model of $\tilde{F} \cup E q(\Sigma)$. Use the congruence relation $\sim_{\mathcal{A}}$ to construct a model of F and prove that it is a model.
(c) Prove that a formula F is satisfiable if and only if $\operatorname{Eq}(\Sigma) \cup\{\tilde{F}\}$ is satisfiable.

Please submit your solution until Wednesday, January 3, 2023 at 12:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- Use the directory Homework 08 in OLAT

