Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

January 5, 2023

Exercises for "Decision Procedures for Verification" Exercise sheet 9

Exercise 9.1: (2 P)
Check the satisfiability of the following ground formula using the algorithm based on congruence closure presented in the lecture.

- $\phi=h(c, e) \approx d \wedge g(d) \approx e \wedge g(h(c, g(d))) \not \approx e$.

You will be able to solve the following exercises after the lecture on Monday, 9. 01. 2023.
Exercise 9.2: (6 P)
Check the satisfiability of the following formulae in positive difference logic w.r.t. \mathbb{Q}; in case of satisfiability find a satisfying assignment.
(1) $x-y \leq 3 \wedge y-z \leq 2 \wedge x-z \leq 1 \wedge x-u \leq-3$.
(2) $x-y \leq 3 \wedge y-z \leq 2 \wedge x-z \leq 1 \wedge x-u \leq-3 \wedge u-x \leq 1$.
(3) $x-y \leq 3 \wedge y-z \leq 2 \wedge x-z \leq 1 \wedge x-u \leq-3 \wedge u-z \leq 3 \wedge z-x \leq 1$.

Exercise 9.3: (4 P)
(I) Check the satisfiability of the following conjunctions in difference logic w.r.t. \mathbb{Z}; in case of satisfiability find a satisfying assignment.
(1) $x-y<4 \wedge y-z \leq 2 \wedge z-x<-3 \wedge x-u \leq-3$.
(2) $x-y<4 \wedge y-z \leq 2 \wedge z-x \leq-5 \wedge x-u<-3 \wedge u-x \leq 4$.
(3) $x-y<4 \wedge y-z \leq 2 \wedge z-x<-5 \wedge x-u<-3 \wedge u-x \leq 4$.
(II) Check the satisfiability of the following formulae in difference logic w.r.t. \mathbb{Q}; in case of satisfiability find a satisfying assignment.
(1) $x-y<4 \wedge y-z \leq 2 \wedge z-x<-5 \wedge x-u \leq-3$.
(2) $x-y<4 \wedge y-z \leq 2 \wedge z-x \leq-6 \wedge x-u \leq-4 \wedge u-x \leq 4$.
(3) $x-y<4 \wedge y-z \leq 2 \wedge z-x \leq-7 \wedge x-u<-3 \wedge u-x \leq 4$.

Hint: It is sufficient to check the existence of negative cycles in the associated graphs by looking at the graphs; in this assignment you do not have to use the Bellman-Ford algorithm for this.

Please submit your solution until Wednesday, January 11, 2023 at 16:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- Use the directory Homework 9 in OLAT.

