# Decision Procedures for Verification 

Combinations of Decision Procedures (2)

23.01.2023

Viorica Sofronie-Stokkermans<br>sofronie@uni-koblenz.de

## Overview

## Until now:

- The Nelson-Oppen Combination Procedure

Today:

- Proofs: Termination, Soundness, Completeness (additional assumptions)
- $\operatorname{DPLL}(\mathcal{T})$
- Applications


## The Nelson-Oppen algorithm

$\phi$ conjunction of literals
Step 1. Purification $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$ : where $\phi_{i}$ is a pure $\Sigma_{i}$-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with $\phi$.

Step 2. Propagation.
The decision procedure for ground satisfiability for $\mathcal{T}_{1}$ and $\mathcal{T}_{2}$ fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.

## The Nelson-Oppen algorithm

$\phi$ conjunction of literals
Step 1. Purification $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$ : where $\phi_{i}$ is a pure $\Sigma_{i}$-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with $\phi$. not problematic; requires linear time

Step 2. Propagation.
The decision procedure for ground satisfiability for $\mathcal{T}_{1}$ and $\mathcal{T}_{2}$ fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables. until an inconsistency is detected or a saturation state is reached.
not problematic; termination guaranteed
Sound: if inconsistency detected input unsatisfiable
Complete: under additional assumptions

## Implementation

$\phi$ conjunction of literals
Step 1. Purification: $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$, where $\phi_{i}$ is a pure $\Sigma_{i}$-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with $\phi$.

Step 2. Propagation: The decision procedure for ground satisfiability for $\mathcal{T}_{1}$ and $\mathcal{T}_{2}$ fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.
How to implement Propagation?
Guessing: guess a maximal set of literals containing the shared variables; check it for $\mathcal{T}_{i} \cup \phi_{i}$ consistency.

Backtracking: identify disjunction of equalities between shared variables entailed by $\mathcal{T}_{i} \cup \phi_{i}$; make case split by adding some of these equalities to $\phi_{1}, \phi_{2}$. Repeat as long as possible.

## The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

## The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified
Soundness: If procedure answers "unsatisfiable" then $\phi$ is unsatisfiable

Proof: Assume that $\phi$ is satisfiable. Then $\phi_{1} \wedge \phi_{2}$ satisfiable.

- The procedure cannot answer "unsatisfiable" in Step 2.
- Let $(\mathcal{M}, \beta) \models \phi_{1} \wedge \phi_{2}$. Assume that $(\mathcal{M}, \beta) \models \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \notin E} c_{i} \not \approx c_{j}$

Then

$$
\begin{aligned}
& \left(\mathcal{M}_{\mid \Sigma_{1}}, \beta\right) \models \phi_{1} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \\
& \left(\mathcal{M}_{\mid \Sigma_{2}}, \beta\right) \models \phi_{2} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j}
\end{aligned}
$$

Guessing: $\bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \notin E} c_{i} \not \approx c_{j}$ "satisfiable arrangement".
Backtracking: Procedure answers satisfiable on the corresponding branch.

## The Nelson-Oppen algorithm

Soundness:
Completeness:

Termination: only finitely many shared variables to be identified If procedure answers "unsatisfiable" then $\phi$ is unsatisfiable Under additional hypotheses

## Completeness

## Example:

| $E_{1}$ | $E_{2}$ |
| :---: | :---: |
| $f(g(x), g(y)) \approx x$ | $k(x) \approx k(x)$ |
| $f(g(x), h(y)) \approx y$ |  |
| non-trivial | non-trivial |

$g(c) \approx h(c) \wedge k(c) \not \approx c$

$$
\begin{array}{cc}
g(c) \approx h(c) & k(c) \not \approx c \\
\text { satisfiable in } E_{1} & \text { satisfiable in } E_{2}
\end{array}
$$

no equations between shared variables; Nelson-Oppen answers "satisfiable"

## Completeness

## Example:

| $E_{1}$ | $E_{2}$ |
| :---: | :---: |
| $f(g(x), g(y)) \approx x$ | $k(x) \approx k(x)$ |
| $f(g(x), h(y)) \approx y$ |  |
|  |  |
| non-trivial | non-trivial |

$g(c) \approx h(c) \wedge k(c) \not \approx c$

$$
\begin{array}{cc}
g(c) \approx h(c) & k(c) \not \approx c \\
\text { satisfiable in } E_{1} & \text { satisfiable in } E_{2}
\end{array}
$$

no equations between shared variables; Nelson-Oppen answers "satisfiable"
A model of $E_{1}$ satisfies $g(c) \approx h(c) \quad$ iff $\quad \exists e \in A$ s.t. $g(e)=h(e)$.
Then, for all $a \in A: \quad a=f_{A}(g(a), g(e))=f_{A}(g(a), h(e))=e$
$g(c) \approx h(c) \wedge k(c) \not \approx c \quad$ unsatisfiable

## Completeness

## Another example

$\mathcal{T}_{1}$ theory admitting models of cardinality at most 2
$\mathcal{T}_{2}$ theory admitting models of any cardinality

$$
\begin{aligned}
& f_{1} \in \Sigma_{1}, f_{2} \in \Sigma_{2} \quad \text { such that } \quad \mathcal{T}_{i} \not \models \forall x, y \quad f_{i}(x)=f_{i}(y) . \\
& \phi=f_{1}\left(c_{1}\right) \not \approx f_{1}\left(c_{2}\right) \wedge f_{2}\left(c_{1}\right) \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right) \\
& \phi_{1}=f_{1}\left(c_{1}\right) \not \approx f_{1}\left(c_{2}\right) \quad \phi_{2}=f_{2}\left(c_{1}\right) \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right)
\end{aligned}
$$

The Nelson-Oppen procedure returns "satisfiable"
$\mathcal{T}_{1} \cup \mathcal{T}_{2} \models \forall x, y, z\left(f_{1}(x) \not \approx f_{1}(y) \wedge f_{2}(x) \not \approx f_{2}(z) \wedge f_{2}(y) \not \approx f_{2}(z)\right.$

$$
\rightarrow(x \not \approx y \wedge x \not \approx z \wedge y \not \approx z))
$$

$f_{1}\left(c_{1}\right) \not \not \approx f_{1}\left(c_{2}\right) \wedge f_{2}\left(c_{1}\right) \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right) \quad$ unsatisfiable

## Completeness

Cause of incompleteness
There exist formulae satisfiable in finite models of bounded cardinality
Solution: Consider stably infinite theories.
$\mathcal{T}$ is stably infinite iff for every quantifier-free formula $\phi$
$\phi$ satisfiable in $\mathcal{T}$ iff $\phi$ satisfiable in an infinite model of $\mathcal{T}$.

Note: This restriction is not mentioned in [Nelson Oppen 1979]; introduced by Oppen in 1980.

## Completeness

Guessing version: $C$ set of constants shared by $\phi_{1}, \phi_{2}$
$R$ equiv. relation assoc. with partition of $C \mapsto a r(C, R)=\bigwedge_{R(c, d)} c \approx d \wedge \bigwedge_{\neg R(c, d)} c \not \approx d$
Lemma. Assume that there exists a partition of $C$ s.t. $\phi_{i} \wedge \operatorname{ar}(C, R)$ is $\mathcal{T}_{i}$-satisfiable. Then $\phi_{1} \wedge \phi_{2}$ is $\mathcal{T}_{1} \cup \mathcal{T}_{2}$-satisfiable.

Idea of proof: Let $\mathcal{A}_{i} \in \operatorname{Mod}\left(\mathcal{T}_{i}\right)$ s.t. $\mathcal{A}_{i} \models \phi_{i} \wedge \operatorname{ar}(C, R)$. Then $c_{A_{1}}=d_{A_{1}}$ iff $c_{A_{2}}=d_{A_{2}}$.
Let $i:\left\{c_{A_{1}} \mid c \in C\right\} \rightarrow\left\{c_{A_{2}} \mid c \in C\right\}, i\left(c_{A_{1}}\right)=c_{A_{2}}$ well-defined; bijection.
Stable infinity: can assume w.l.o.g. that $\mathcal{A}_{1}, \mathcal{A}_{2}$ have the same cardinality
Let $h: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ bijection s.t. $h\left(c_{A_{1}}\right)=c_{A_{2}}$
Use $h$ to transfer the $\Sigma_{1}$-structure on $\mathcal{A}_{2}$.


Theorem. If $\mathcal{T}_{1}, \mathcal{T}_{2}$ are both stably infinite and the shared signature is empty then the Nelson-Oppen procedure is sound, complete and terminating. Thus, it transfers decidability of ground satisfiability from $\mathcal{T}_{1}, \mathcal{T}_{2}$ to $\mathcal{T}_{1} \cup \mathcal{T}_{2}$.

## Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
(a) decide whether there is a disjunction of equalities between variables
(b) investigate different branches corresponding to disjunctions

## Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
$\mathcal{T}$ is convex iff for every quantifier-free formula $\phi$,
$\phi \models \bigvee_{i} x_{i} \approx y_{i}$ implies $\phi \models x_{j} \approx y_{j}$ for some $j$.
$\mapsto$ No branching

## Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
$\mathcal{T}$ is convex iff for every quantifier-free formula $\phi$,

$$
\phi \models \bigvee_{i} x_{i} \approx y_{i} \text { implies } \phi \models x_{j} \approx y_{j} \text { for some } j
$$

$\mapsto$ No branching

Theorem. Let $\mathcal{T}_{1}$ and $\mathcal{T}_{2}$ be convex and stably infinite; $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ If satisfiability of conjunctions of literals in $\mathcal{T}_{i}$ is in PTIME Then satisfiability of conjunctions of literals in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is in PTIME

## Complexity

In general: non-deterministic procedure
Theorem. Let $\mathcal{T}_{1}$ and $\mathcal{T}_{2}$ be convex and stably infinite; $\Sigma_{1} \cap \Sigma_{2}=\emptyset$
If satisfiability of conjunctions of literals in $\mathcal{T}_{i}$ is in NP Then satisfiability of conjunctions of literals in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is in NP

## Extensions of the Nelson-Oppen procedure

- relax the stable infiniteness requirement
- relax the requirement that the theories have disjoint signatures


## Extensions of the Nelson-Oppen procedure

- relax the stable infiniteness requirement
[Tinelli,Zarba'03] One theory "shiny" (for each satisf. constraint we can compute a finite $k$ s.t. the theory has models of every cardinality $\lambda \geq k$ ) [Fontaine'05] "Polite"; [Chocron,Fontaine,Ringeissen'14] "Gentle"
- relax the requirement that the theories have disjoint signatures
[Tinelli,Ringeissen’03] Theories sharing absolutely free constructors
[Ghilardi'04] Model theoretical conditions
[Sofronie-Stokkermans, Ihlemann'10] Local extensions
[Chocron, Fontaine, Ringeissen'16,'20] Theories with "bridging functions"


## Main idea:

Find situations in which $\mathcal{T}_{i}$ models of $\phi_{i}, i=1,2$ can be "amalgamated" to a $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ model of $\phi_{1} \wedge \phi_{2}$.

## From conjunctions to arbitrary combinations

Until now:
check satisfiability for conjunctions of literals

Question:
how to check satisfiability of sets of clauses?

## Overview

## Satisfiability w.r.t. theories

- Propositional logic
- resolution
- DPLL
- Ground formulae
- conjunctions of literals: specialized methods
- clauses: DPLL(T)
- Formulae with quantifiers
- reduction to SAT for ground formulae instantiation $\Leftarrow$ NEXT WEEK
(situations when sound and complete)
- resolution $(\bmod T)$
3.6 The $\operatorname{DPLL}(\mathcal{T})$ algorithm


## Reminder: Propositional SAT

The DPLL algorithm

## A succinct formulation

State: $M \| F$,
where:

- $M$ partial assignment (sequence of literals),
some literals are annotated ( $L^{d}$ : decision literal)
- F clause set.


## A succinct formulation

## UnitPropagation

$M\|F, C \vee L \Rightarrow M, L\| F, C \vee L \quad$ if $M \models \neg C$, and $L$ undef. in $M$
Decide
$M\left\|F \Rightarrow M, L^{d}\right\| F$
if $L$ or $\neg L$ occurs in $F, L$ undef. in $M$
Fail
$M \| F, C \Rightarrow$ Fail
Backjump

$$
M, L^{d}, N\left\|F \Rightarrow M, L^{\prime}\right\| F
$$

if $M \models \neg C, M$ contains no decision literals
if $\left\{\begin{array}{l}\text { there is some clause } C \vee L^{\prime} \text { s.t.: } \\ F \models C \vee L^{\prime}, M \models \neg C, \\ L^{\prime} \text { undefined in } M \\ L^{\prime} \text { or } \neg L^{\prime} \text { occurs in } F .\end{array}\right.$

## Example

Assignment:
$\emptyset$
$P_{1}^{d}$
$P_{1}^{d} P_{2}$
$P_{1}^{d} P_{2} P_{3}^{d}$
$P_{1}^{d} P_{2} P_{3}^{d} P_{4}$
$P_{1}^{d} P_{2} P_{3}^{d} P_{4} P_{5}^{d}$
$P_{1}^{d} P_{2} P_{3}^{d} P_{4} P_{5}^{d} \neg P_{6}$
$P_{1}^{d} P_{2} P_{3}^{d} P_{4} \neg P_{5}$

Clause set:
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \quad \Rightarrow$ (Decide)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \quad \Rightarrow$ (UnitProp)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \Rightarrow$ (Decide)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \quad \Rightarrow$ (UnitProp)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \Rightarrow$ (Decide)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \quad \Rightarrow$ (UnitProp)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \quad \Rightarrow$ (Backtrack)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2}$

## DPLL with learning

The DPLL system with learning consists of the four transition rules of the Basic DPLL system, plus the following two additional rules:

Learn
$M\|F \Rightarrow M\| F, C$ if all atoms of $C$ occur in $F$ and $F \models C$
Forget
$M\|F, C \Rightarrow M\| F$ if $F \models C$

In these two rules, the clause $C$ is said to be learned and forgotten, respectively.

## SAT Modulo Theories (SMT)

Some problems are more naturally expressed in richer logics than just propositional logic, e.g:

- Software/Hardware verification needs reasoning about equality, arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a ground 1st-order formula with respect to a background theory T

Example 1: $\mathcal{T}$ is Equality with Uninterpreted Functions (UIF):

$$
f(g(a)) \not \approx f(c) \vee g(a) \approx d, \quad g(a) \approx c, \quad c \not \approx d
$$

Example 2: for combined theories:

$$
A \approx \operatorname{write}(B, a+1,4), \quad \operatorname{read}(A, b+3) \approx 2 \vee f(a-1) \not \approx f(b+1)
$$

## SAT Modulo Theories (SMT)

## The "very eager" approach to SMT

## Method:

- translate problem into equisatisfiable propositional formula;
- use off-the-shelf SAT solver
- Why "eager"?

Search uses all theory information from the beginning

- Characteristics:
+ Can use best available SAT solver
- Sophisticated encodings are needed for each theory
- Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

- DPLL-based techniques for handling the boolean structure
- Efficient theory solvers for conjunctions of $\mathcal{T}$-literals


## SAT Modulo Theories (SMT)

"Lazy" approaches to SMT: Idea
Example: consider $\mathcal{T}=$ UIF and the following set of clauses:

$$
\underbrace{f(g(a)) \not \approx f(c)}_{\neg P_{1}} \vee \underbrace{g(a) \approx d}_{P_{2}}, \quad \underbrace{g(a) \approx c}_{P_{3}}, \quad \underbrace{c \not \approx d}_{\neg P_{4}}
$$

1. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}\right\}$ to SAT solver

SAT solver returns model $\left[\neg P_{1}, P_{3}, \neg P_{4}\right]$
Theory solver says $\neg P_{1} \wedge P_{3} \wedge \neg P_{4}$ is $\mathcal{T}$-inconsistent
2. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver

SAT solver returns model $\left[P_{1}, P_{2}, P_{3}, \neg P_{4}\right.$ ]
Theory solver says $P_{1} \wedge P_{2} \wedge P_{3} \wedge \neg P_{4}$ is $\mathcal{T}$-inconsistent
3. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}, \neg P_{1} \vee \neg P_{2} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver SAT solver says UNSAT

