
Decision Procedures for Verification

Combinations of Decision Procedures (3)

30.01.2023

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now

Combinations of Decision Procedures

The Nelson/Oppen Procedure

(for theories with disjoint signature)

From conjunctions to arbitrary combinations

lazy approach to DPLL(T)

2

SAT Modulo Theories (SMT)

“Lazy” approaches to SMT: Idea

Example: consider T = UIF and the following set of clauses:

f (g(a)) 6≈ f (c)
︸ ︷︷ ︸

¬P1

∨ g(a) ≈ d
︸ ︷︷ ︸

P2

, g(a) ≈ c
︸ ︷︷ ︸

P3

, c 6≈ d
︸ ︷︷ ︸

¬P4

1. Send {¬P1∨P2, P3, ¬P4} to SAT solver

SAT solver returns model [¬P1,P3,¬P4]

Theory solver says ¬P1 ∧ P3 ∧ ¬P4 is T -inconsistent

2. Send {¬P1∨P2, P3, ¬P4, P1∨¬P3∨P4} to SAT solver

SAT solver returns model [P1,P2,P3,¬P4]

Theory solver says P1 ∧ P2 ∧ P3 ∧ ¬P4 is T -inconsistent

3. Send {¬P1∨P2,P3,¬P4,P1∨¬P3∨P4,¬P1∨¬P2∨¬P3∨P4} to SAT solver

SAT solver says UNSAT

3

SAT Modulo Theories (SMT)

Optimized lazy approach

LA • Check T-consistency only of full propositional models

OLA • Check T-consistency of partial assignment while being built

LA • Given a T-inconsistent assignment M, add ¬M as a clause

OLA • Given a T-inconsistent assignment M, find an explanation

(a small T-inconsistent subset of M) and add it as a clause

LA • Upon a T-inconsistency, add clause and restart

OLA • Upon a T-inconsistency, do conflict analysis of the

explanation and Backjump

4

SAT Modulo Theories (SMT)

“Lazy” approaches to SMT

• Why “lazy”?

Theory information used only lazily, when checking T -consistency of

propositional models

• Characteristics:

+ Modular and flexible

− Theory information does not guide the search

(only validates a posteriori)

Tools: CVC-Lite, ICS, MathSAT, TSAT+, Verifun, ...

5

“Lazy” approaches to SMT

Lazy theory learning:

M, L,M1||F ⇒ ∅||F ,¬L1 ∨ · · · ∨ ¬Ln ∨¬L if

M, L,M1 |= F

{L1, . . . , Ln} ⊆ M

L1 ∧ · · · ∧ Ln ∧ L |=T ⊥

Lazy theory learning + no repetitions

M, L,M1||F ⇒ ∅||F ,¬L1 ∨ · · · ∨¬Ln ∨¬L if

{L1, . . . , Ln} ⊆ M

L1 ∧ · · · ∧ Ln ∧ L |=T ⊥

¬L1 ∨ · · · ∨ ¬Ln ∨ ¬L 6∈ F

6

DPLL(T) Rules

UnitPropagation

M||F ,C ∨ L⇒ M, L||F ,C ∨ L if M |= ¬C , and L undef. in M

Decide

M||F ⇒ M, Ld ||F if L occurs in F , L undef. in M

Fail

M||F ,C ⇒ Fail if M |= ¬C , no backtrack possible

Backjump

M, Ld ,N||F ⇒ M, L′||F if

there is some clause C ∨ L′ s.t.:

F |= C ∨ L′,M |= ¬C ,

L′ undefined in M

L′ or ¬L′ occurs in F .
Restart/Learn

M||F ⇒ ∅||F , F ′ if F |= F ′, F ′ obtained from M, F

TPropagation

M||F ⇒ M, L||F if M |=T L

7

DPLL(T) Example

Consider again same example with UIF:

f (g(a)) 6≈ f (c)
︸ ︷︷ ︸

¬P1

∨ g(a) ≈ d
︸ ︷︷ ︸

P2

, g(a) ≈ c
︸ ︷︷ ︸

P3

, c 6≈ d
︸ ︷︷ ︸

¬P4

∅ ||¬P1 ∨ P2,P3,¬P4 ⇒ (UnitPropagation)

P3 ||¬P1 ∨ P2,P3,¬P4 ⇒ (TPropagation)

P3P1 ||¬P1 ∨ P2,P3,¬P4 ⇒ (UnitPropagation)

P3P1P2 ||¬P1 ∨ P2,P3,¬P4 ⇒ (TPropagation)

P3P1P2P4 ||¬P1 ∨ P2,P3,¬P4 ⇒ fail

No search in this example

8

Termination

Idea: DPLL(T) terminates if no clause is learned infinitely many times,

since only finitely many such new clauses (built over input literals) exist.

Theorem. There exists no infinite sequence of the form

∅||F ⇒ S1 ⇒ S2...

if no clause C is learned by Reset & Learn/Lazy Theory Learning infinitely

many times along a sequence.

A similar termination result holds also for the DPLL(T) approach with

Theory Propagation.

9

Termination

Theorem. There exist no infinite sequences of the form ∅||F ⇒ S1 ⇒ S2...

Proof. (Idea) We define a well-founded strict partial ordering ≻ on states,

and show that each rule application M||F ⇒ M′||F ′ is decreasing with

respect to this ordering, i.e., M||F ≻ M′||F ′.

Let M be of the form M0, L1,M1, ...Lp ,Mp , where L1, ..., Lp are all the decision literals

of M. Similarly, let M′ be M′

0 , L
′

1,M
′

1 , ...L
′

p′
,M′

p′
.

Let N be the number of distinct atoms (propositional variables) in F .

(Note that p, p′ and the length of M and M′ are always smaller than or equal to N.)

10

Termination

Theorem. There exist no infinite sequences of the form ∅||F ⇒ S1 ⇒ ...

Proof. (continued)

Let m(M) be N − length(M) (nr. of literals missing in M for M to be total).

Define: M0L1M1 . . . LpMp ||F ≻ M′

0L
′

1M
′

1 . . . L
′

p′
M′

p′
||F ′ if

(i) there is some i with 0 ≤ i ≤ p, p′ such that

m(M0) = m(M′

0), ...m(Mi−1) = m(M′

i−1),m(Mi) > m(M′

i) or

(ii) m(M0) = m(M′

0), ...m(Mp) = m(M′

p) and m(M) > m(M′).

Comparing the number of missing literals in sequences is a strict ordering (irreflexive

and transitive) and it is well-founded, and hence this also holds for its lexicographic

extension on tuples of sequences of bounded length.

No learning/forgetting: It is easy to see that all Basic DPLL rule applications are

decreasing with respect to ≻ if fail is added as an additional minimal element. (The

rules UnitPropagate and Backjump decrease by case (i) of the definition and Decide

decreases by case (ii).)

11

Termination

Theorem. There exist no infinite sequences of the form ∅||F ⇒ S1 ⇒ ...

Note: Combine learning with basic DPLL(T): no clause learned infinitely many times.

Forget: For this termination condition to be fulfilled, applying at least one rule of the

Basic DPLL system between any two Learn applications does not suffice. It suffices if,

in addition, no clause generated with Learning is ever forgotten.

12

Soundness, Correctness, Termination

Lemma. If ∅||F ⇒∗ M||F ′ then:

(1) All atoms in M and all atoms in F ′ are atoms of F .

(2) M: no literal more than once, no complementary literals

(3) F ′ is logically equivalent to F

(4) if M = M0L1M1 . . . LnMn where Li all decision literals

then F , L1, . . . , Li |= Mi .

Lemma. If ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic

DPLL system and Lazy Theory Learning, then:

(1) All literals of F ′ are defined in M

(2) There is no clause C in F ′ such that M |= ¬C

(3) M is a model of F .

13

Soundness, Correctness, Termination

Lemma. If ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic

DPLL system and Lazy Theory Learning, then M is a T -model of F .

Theorem. The Lazy Theory learning DPLL system provides a decision

procedure for the satisfiability in T of CNF formulae F , that is:

1. ∅||F ⇒∗ fail if, and only if, F is unsatisfiable in T .

2. ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Lazy Theory Learning, if, and only if, F is satisfiable in T .

Proof

(1) If ∅||F ⇒∗ fail then there exists state M||F ′ with ∅||F ⇒∗ M||F ′ ⇒ fail , there

is no decision literal in M and M |= ¬C for some clause C in F . By the construction

of M, F |= M, so F |= ¬C . Thus F is unsatisfiable.

To prove the converse, if ∅||F 6⇒∗ fail then by there must be a state M||F ′ such that

∅||F ⇒∗ M||F ′. Then M |= F , so F is satisfiable.

14

Soundness, Correctness, Termination

Lemma. If ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic

DPLL system and Lazy Theory Learning, then M is a T -model of F .

Theorem. The Lazy Theory learning DPLL system provides a decision

procedure for the satisfiability in T of CNF formulae F , that is:

1. ∅||F ⇒∗ fail if, and only if, F is unsatisfiable in T .

2. ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Lazy Theory Learning, if, and only if, F is satisfiable in T .

Proof

2. If ∅||F ⇒∗ M||F then F is satisfiable. Conversely, if ∅||F 6⇒∗ M||F then

∅||F ⇒∗ fail , so F is unsatisfiable.

15

Termination, Soundness and Completeness

DPLL(T) with (eager) theory propagation

Lemma. If ∅||F ⇒ M||F then M is T -consistent.

Proof. This property is true initially, and all rules preserve it, by the fact

that M |=T L if, and only if, M ∪ ¬L is T -inconsistent: the rules only

add literals to M that are undefined in M, and Theory Propagate adds all

literals L of F that are theory consequences of M, before any literal ¬L

making it T -inconsistent can be added to M by any of the other rules.

16

Termination, Soundness and Completeness

DPLL(T) with (eager) theory propagation

Definition. A DPLL(T) procedure with Eager Theory Propagation for T is

any procedure taking an input CNF F and computing a sequence ∅||F ⇒∗ S

where S is a final state wrt. Theory Propagate and the Basic DPLL system.

Theorem The DPLL system with eager theory propagation provides a

decision procedure for the satisfiability in T of CNF formulae F , that is:

1. ∅||F ⇒∗ fail if, and only if, F is unsatisfiable in T .

2. ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Theory Propagate, if, and only if, F is satisfiable in T .

3. If ∅||F ⇒ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Theory Propagate, then M is a T -model of F .

17

Literature

Full proofs and further details can be found in:

Robert Nieuwenhuis, Albert Oliveras and Cesare Tinelli:

“Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-

Logemann-Loveland Procedure to DPLL(T)”

Journal of the ACM, Vol. 53, No. 6, November 2006, pp.937-977.

18

SMT tools

SAT problems

Given: conjunction φ of prop. clauses
Task: check if φ satisfiable

Method: DPLL
• deterministic choices first

unit resolution
pure literal assignment

• case distinction (splitting)
• heuristics

selection criteria for splitting
backtracking
conflict-driven learning

19

SMT tools

SAT problems SMT problems

Given: conjunction φ of prop. clauses Given: conjunction φ of clauses
Task: check if φ satisfiable Task: check if φ |=T ⊥

Method: DPLL Method: DPLL(T)
• deterministic choices first • Boolean assignment found

unit resolution using DPLL
pure literal assignment • ... and checked for T -satisfiability

• case distinction (splitting) • the assignment can be partial
• heuristics and checked before splitting

selection criteria for splitting • usual heuristics are used:
backtracking non-chronological backtracking
conflict-driven learning learning

20

SMT tools

SAT problems SMT problems

Given: conjunction φ of prop. clauses Given: conjunction φ of clauses
Task: check if φ satisfiable Task: check if φ |=T ⊥

Method: DPLL Method: DPLL(T)
• deterministic choices first • Boolean assignment found

unit resolution using DPLL
pure literal assignment • ... and checked for T -satisfiability

• case distinction (splitting) • the assignment can be partial
• heuristics and checked before splitting

selection criteria for splitting • usual heuristics are used:
backtracking non-chronological backtracking
conflict-driven learning learning

Systems implementing such specialized satisfiability problems: Yices, Barcelogic Tools,

CVC lite,haRVey,Math-SAT,Z3,...are called (S)atisfiability (M)odulo (T)heory solvers.

21

Satisfiability of formulae with quantifiers

22

Satisfiability of formulae with quantifiers

In many applications we are interested in testing the satisfiability of formulae

containing (universally quantified) variables.

Examples

• check satisfiability of formulae in the Bernays-Schönfinkel class

• check whether a set of (universally quantified) Horn clauses

entails a ground clause

• check whether a property is consequence of a set of axioms

Example 1: f : Z → Z is monotonely increasing

and g : Z → Z is defined by g(x) = f (x + x)

then g is also monotonely increasing

Example 2: If array a is increasingly sorted, and

x is inserted before the first position i with a[i] > x

then the array remains increasingly sorted.

23

A theory of arrays

We consider the theory of arrays in a many-sorted setting.

Syntax:

• Sorts: Elem (elements), Array (arrays) and Index (indices, here integers).

• Function symbols: read, write.

a(read) = Array × Index → Element

a(write) = Array × Index × Element → Array

24

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays Tarrays :

• Ti (theory of indices): Presburger arithmetic

• Te (theory of elements): arbitrary

• Axioms for read, write

read(write(a, i , e), i) ≈ e

j 6≈ i ∨ read(write(a, i , e), j) = read(a, j).

25

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays Tarrays :

• Ti (theory of indices): Presburger arithmetic

• Te (theory of elements): arbitrary

• Axioms for read, write

∀a, i , e read(write(a, i , e), i) ≈ e

∀a, i , j , e j 6≈ i ∨ read(write(a, i , e), j) ≈ read(a, j).

Fact: Undecidable in general.

Goal: Identify a fragment of the theory of arrays which is decidable.

26

A decidable fragment

• Index guard a positive Boolean combination of atoms of the form

t ≤ u or t = u where t and u are either a variable or a ground term of

sort Index

Example: (x ≤ 3 ∨ x ≈ y) ∧ y ≤ z is an index guard

Example: x + 1 ≤ c, x + 3 ≤ y , x + x ≤ 2 are not index guards.

• Array property formula [Bradley,Manna,Sipma’06]

(∀i)(ϕI (i) → ϕV (i)), where:

ϕI : index guard

ϕV : formula in which any universally quantified i occurs in a direct

array read; no nestings

Example: ∀x , y(c≤x≤y≤d → a[x]≤a[y]) is an array property formula

Example: ∀x , y(x < y → a[x] < a[y]) is not an array property formula

27

Array Property Fragment

Definition (The Array Property Fragment) [Bradley,Manna,Sipma’06] The array

property fragment consists of all existentially-closed Boolean combinations of array

property formulae and quantifier-free Tarrays-formulae. The height of a formula in the

fragment is the maximum height of an array property subformula.

Notation: a[i] := read(a, i) a{k ← v} := write(a, k, v)

Example (Array Property Formula)

The following formula is in the array property fragment of Tarrays:

(∃a : array)(∃w , x , y , z , k, l , n : index)w < x < y < z ∧ 0 < k < l < n ∧ l − k > 1

∧sorted(0, n − 1, a{k ← w}{l ← x}) ∧ sorted(0, n − 1, a{k ← y}{l ← z})

where: sorted(l , u, a) is the condition that the array a is sorted (nondecreasing)

between elements l and u and can be described by the formula:

∀i , j (l ≤ i ≤ j ≤ u → a[i] ≤ a[j])

28

Decision Procedure

(Rules should be read from top to bottom)

Step 1: Put F in NNF.

Step 2: Apply the following rule exhaustively to remove writes:

F [write(a, i , v)]

F [a′] ∧ a′[i] = v ∧ (∀j .j 6= i → a[j] = a′[j])
for fresh a′ (write)

Given a formula F containing an occurrence of a write term write(a, i , v),

we can substitute every occurrence of write(a, i , v) with a fresh variable a′

and explain the relationship between a′ and a.

29

Decision Procedure

Step 3 Apply the following rule exhaustively to remove existential

quantification:

F [∃i .G [i]]

F [G [j]]
for fresh j (exists)

Existential quantification can arise during Step 1 if the given formula

contains a negated array property.

30

Decision Procedure

Steps 4-6 accomplish the reduction of universal quantification to finite

conjunction.

The main idea is to select a set of symbolic index terms on which to

instantiate all universal quantifiers.

31

Theories of arrays

Step 4 From the output F3 of Step 3, construct the index set I:

I = {λ}∪

{t | ·[t] ∈ F3 such that t is not a universally quantified variable}∪

{t | t occurs as an evar in the parsing of index guards}

(evar is any constant, ground term, or unquantified variable.)

This index set is the finite set of indices that need to be examined. It

includes all terms t that occur in some read(a, t) anywhere in F (unless it

is a universally quantified variable) and all terms t that are compared to a

universally quantified variable in some index guard.

λ is a fresh constant that represents all other index positions that are not

explicitly in I.

32

Theories of arrays

Step 5 Apply the following rule exhaustively to remove universal

quantification:

H[∀i .F [i] → G [i]]

H
[∧

i∈In (F [i] → G [i])
] (forall)

where n is the size of the list of quantified variables i .

This is the key step.

It replaces universal quantification with finite conjunction over the index

set. The notation i ∈ In means that the variables i range over all n-tuples

of terms in I.

33

Theories of arrays

Step 6: From the output F5 of Step 5, construct

F6 : F5 ∧
∧

i∈I\{λ}

λ 6= i

The new conjuncts assert that the variable λ introduced in Step 4 is unique:

it does not equal any other index mentioned in F5.

Step 7: Decide the TA-satisfiability of F6 using the decision procedure for

the quantifier free fragment.

34

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

It contains one array property,

∀i .i 6= l → a[i] = b[i]

index guard: i 6= l := (i ≤ l − 1 ∨ i ≥ l + 1) value constraint: a[i] = b[i]

Step 1: The formula is already in NNF.

Step 2: We rewrite F as:

F2 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

∧a′[l] = v ∧ (∀j .j 6= l → a[j] = a′[j]).

35

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 2: We rewrite F as:

F2 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

∧a′[l] = v ∧ (∀j .j 6= l → a[j] = a′[j]).

index guards: i 6= l := (i ≤ l − 1 ∨ i ≥ l + 1) value constraint: a[i] = b[i]

j 6= l := (j ≤ l − 1 ∨ j ≥ l + 1) value constraint: a[i] = a′ [j]

Step 3: F2 does not contain any existential quantifiers 7→ F3 = F2.

Step 4: The index set is

I = {λ} ∪ {k} ∪ {l , l − 1, l + 1} = {λ, k, l , l − 1, l + 1}

36

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 3:

F3 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

∧a′[l] = v ∧ (∀j .j 6= l → a[j] = a′[j]).

Step 4: I = {λ, k, l , l − 1, l + 1}

Step 5: we replace universal quantification as follows:

F5 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧
∧

i∈I

(i 6= l → a[i] = b[i])

∧a′[l] = v ∧
∧

i∈I

(j 6= l → a[j] = a′[j]).

37

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

I = {λ, k, l , l − 1, l + 1}

Step 5 (continued) Expanding produces:

F5′ : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧

(λ 6= l → a[λ] = b[λ]) ∧ (k 6= l → a[k] = b[k]) ∧ (l 6= l → a[l] = b[l]) ∧

(l − 1 6= l → a[l − 1] = b[l − 1]) ∧ (l + 1 6= l → a[l + 1] = b[l + 1]) ∧

a′[l] = v ∧ (λ 6= l → a[λ] = a′[λ]) ∧ (k 6= l → a[k] = a′[k]) ∧

(l 6= l → a[l] = a′[l]) ∧ (l − 1 6= l → a[l − 1] = a′[l − 1]) ∧

(l + 1 6= l → a[l + 1] = a′[l + 1]).

38

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

I = {λ} ∪ {k} ∪ {l , l − 1, l + 1} = {λ, k, l , l − 1, l + 1}

Step 5 (continued): Simplifying produces

F ′′5 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (λ 6= l → a[λ] = b[λ])

∧(k 6= l → a[k] = b[k]) ∧ a[l − 1] = b[l − 1] ∧ a[l + 1] = b[l + 1]

∧a′[l] = v ∧ (λ 6= l → a[λ] = a′[λ])

∧(k 6= l → a[k] = a′[k]) ∧ a[l − 1] = a′[l − 1] ∧ a[l + 1] = a′[l + 1].

39

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 6 distinguishes λ from other members of I:

F6 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (λ 6= l → a[λ] = b[λ])

∧(k 6= l → a[k] = b[k]) ∧ a[l − 1] = b[l − 1] ∧ a[l + 1] = b[l + 1]

∧a′[l] = v ∧ (λ 6= l → a[λ] = a′[λ])

∧(k 6= l → a[k] = a′[k]) ∧ a[l − 1] = a′[l − 1] ∧ a[l + 1] = a′[l + 1]

∧λ 6= k ∧ λ 6= l ∧ λ 6= l − 1 ∧ λ 6= l + 1.

40

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 6 Simplifying, we have

F
′6 : a

′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ a[λ] = b[λ]

∧a[k] = b[k] ∧ a[l − 1] = b[l − 1] ∧ a[l + 1] = b[l + 1]

∧a′[l] = v ∧ a[λ] = a
′

[λ]

∧(k 6= l → a[k] = a
′[k]) ∧ a[l − 1] = a

′[l − 1] ∧ a[l + 1] = a
′[l + 1]

∧λ 6= k ∧ λ 6= l ∧ λ 6= l − 1 ∧ λ 6= l + 1.

We can use for instance DPLL(T).

Alternative: Case distinction. There are two cases to consider.

(1) If k=l , then a′[l]=v and a′[k]=b[k] imply b[k]=v , yet b[k]6=v .

(2) If k 6=l , then a[k]=v and a[k]=b[k] imply b[k]=v , but again b[k]6=v .

Hence, F’6 is TA-unsatisfiable, indicating that F is TA-unsatisfiable.

41

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof

(Soundness) Step 1-6 preserve satisfiability

(Fi is a logical consequence of Fi−1).

42

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 6: From the output F5 of Step 5, construct

F6 : F5 ∧
∧

i∈I\{λ}

λ 6= i

Assume that F6 is satisfiabile. Clearly F5 has a model.

43

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 5 Apply the following rule exhaustively to remove universal quantification:

H[∀i .F [i]→ G [i]]

H
[

∧

i∈In (F [i]→ G [i])
] (forall)

Assume that F5 is satisfiabile. Let A = (Z, Elem, {aA}a∈Arrays , ...) be a

model for F5. Construct a model B for F4 as follows.

For x ∈ Z: l(x) (u(x)) closest left (right) neighbor of x in I.

aB(x) =

{

aA(l(x)) if x − l(x) ≤ u(x)− x or u(x) =∞

aA(u(x)) if x − l(x) > u(x)− x or l(x) = −∞

44

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 3 Apply the following rule exhaustively to remove existential quantification:

F [∃i .G [i]]

F [G [j]]
for fresh j (exists)

If F3 has model then F2 has model

45

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 2: Apply the following rule exhaustively to remove writes:

F [write(a, i , v)]

F [a′] ∧ a′[i] = v ∧ (∀j .j 6= i → a[j] = a′[j])
for fresh a

′

(write)

Given a formula F containing an occurrence of a write term write(a, i , v), we can

substitute every occurrence of write(a, i , v) with a fresh variable a′ and explan the

relationship between a′ and a.

If F2 has a model then F1 has a model.

Step 1: Put F in NNF: NNF F1 is equivalent to F.

46

Theories of arrays

Theorem (Complexity) Suppose (Tindex ∪ Telem)-satisfiability is in NP.

For sub-fragments of the array property fragment in which formulae have

bounded-size blocks of quantifiers, Tarrays -satisfiability is NP-complete.

Proof NP-hardness is clear.

That the problem is in NP follows easily from the procedure: instantiating

a block of n universal quantifiers quantifying subformula G over index set I

produces |I | · n new subformulae, each of length polynomial in the length

of G . Hence, the output of Step 6 is of length only a polynomial factor

greater than the input to the procedure for fixed n.

47

Program verification

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

48

Program Verification

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

−1 ≤ i < |a|∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

−1 ≤ i < |a| ∧ 0 ≤ j ≤ i∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

partitioned(a, 0, j − 1, j, j) C2

Generate verification conditions and prove that they are valid

Predicates:

• sorted(a, l , u): ∀i , j(l≤i≤j≤u→a[i]≤a[j])

• partitioned(a, l1, u1, l2, u2): ∀i , j(l1≤i≤u1≤l2≤j≤u2→a[i]≤a[j])

49

Program Verification

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

−1 ≤ i < |a|∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

−1 ≤ i < |a| ∧ 0 ≤ j ≤ i∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

partitioned(a, 0, j − 1, j, j) C2

Generate verification conditions and prove that they are valid

Predicates:

• sorted(a, l , u): ∀i , j(l≤i≤j≤u→a[i]≤a[j])

• partitioned(a, l1, u1, l2, u2): ∀i , j(l1≤i≤u1≤l2≤j≤u2→a[i]≤a[j])

To prove: C2(a) ∧ Update(a, a′)→ C2(a
′)

50

Another Situation

Insertion of an element c in a sorted array a of length n

for (i := 1; i ≤ n; i := i + 1) {
if a[i] ≥ c{n := n + 1

for (j := n; j > i ; j := j − 1){a[i] := a[i − 1]}
a[i] := c; return a

}} a[n + 1] := c; return a

Task:

If the array was sorted before insertion it is sorted also after insertion.

Sorted(a, n) ∧ Update(a, n, a′, n′) ∧ ¬Sorted(a′, n′) |=T ⊥?

51

Another Situation

Task:

If the array was sorted before insertion it is sorted also after insertion.

Sorted(a, n) ∧ Update(a, n, a′, n′) ∧ ¬Sorted(a′, n′) |=T ⊥?

Sorted(a, n) ∀i , j(1 ≤ i ≤ j ≤ n → a[i] ≤ a[j])

Update(a, n, a′, n′) ∀i((1 ≤ i ≤ n ∧ a[i] < c)→ a′[i] = a[i])

∀i((c ≤ a(1)→ a′[1] := c)

∀i((a[n] < c → a′[n + 1] := c)

∀i((1 ≤ i − 1 ≤ i ≤ n ∧ a[i − 1] < c ∧ a[i] ≥ c)→ (a′[i] = c)

∀i((1 ≤ i − 1 ≤ i ≤ n ∧ a[i − 1] ≥ c ∧ a[i] ≥ c → a′[i] := a[i − 1])

n′ := n + 1

¬Sorted(a′, n′) ∃k, l(1 ≤ k ≤ l ≤ n′ ∧ a′k] > a′[l])

52

Beyond the array property fragment

Extension: New arrays defined by case distinction – Def(f ′)

∀x(φi (x) → f ′(x)=si (x)) i ∈ I , where φi (x) ∧ φj (x) |=T0
⊥ for i 6=j (1)

∀x(φi (x) → ti (x)≤f ′(x)≤si (x)) i ∈ I , where φi (x) ∧ φj (x) |=T0
⊥ for i 6=j (2)

where si , ti are terms over the signature Σ such that T0 |= ∀x(φi (x)→ti (x)≤si (x))

for all i ∈ I .

T0 ⊆ T0 ∧Def(f ′) has the property that for every set G of ground

clauses in which there are no nested applications of f ′:

T0 ∧ Def(f ′) ∧ G |=⊥ iff T0 ∧ Def(f ′)[G] ∧ G

(sufficient to use instances of axioms in Def(f ′) which are relevant for G)

• Some of the syntactic restrictions of the array property fragment can be

lifted

53

Pointer Structures

[McPeak, Necula 2005]

• pointer sort p, scalar sort s; pointer fields (p → p); scalar fields (p → s);

• axioms: ∀p E ∨ C; E contains disjunctions of pointer equalities
C contains scalar constraints

Assumption: If f1(f2(. . . fn(p))) occurs in axiom, the axiom also contains:
p=null ∨ fn(p)=null ∨ · · · ∨ f2(. . . fn(p)))=null

Example: doubly-linked lists; ordered elements

∀p (p 6= null ∧ p.next 6= null → p.next.prev = p)

∀p (p 6= null ∧ p.prev 6= null → p.prev.next = p)

∀p (p 6= null ∧ p.next 6= null → p.info ≤ p.next.info)

54

Pointer Structures

[McPeak, Necula 2005]

• pointer sort p, scalar sort s; pointer fields (p → p); scalar fields (p → s);

• axioms: ∀p E ∨ C; E contains disjunctions of pointer equalities
C contains scalar constraints

Assumption: If f1(f2(. . . fn(p))) occurs in axiom, the axiom also contains:
p=null ∨ fn(p)=null ∨ · · · ∨ f2(. . . fn(p)))=null

Theorem. K set of clauses in the fragment above. Then for every set G of

ground clauses, (K ∪ G) ∪ Ts |=⊥ iff K [G] ∪ Ts |=⊥

where K [G] is the set of instances of K in which the variables are replaced

by subterms in G .

55

Example: A theory of doubly-linked lists

∀p (p 6= null ∧ p.next 6= null → p.next.prev = p)

∀p (p 6= null ∧ p.prev 6= null → p.prev.next = p)

∧ c 6=null ∧ c.next 6=null ∧ d 6=null ∧ d .next6=null ∧ c.next=d .next ∧ c 6= d |= ⊥

56

Example: A theory of doubly-linked lists

(c 6=null ∧ c.next 6=null→c.next.prev=c) (c.next 6=null ∧ c.next.next6=null→c.next.next.prev=c.next

(d 6=null ∧ d .next6=null→d .next.prev=d) (d .next6=null ∧ d .next.next6=null→d.next.next.prev=d .next

∧ c 6=null ∧ c.next 6=null ∧ d 6=null ∧ d .next6=null ∧ c.next=d .next ∧ c 6= d |= ⊥

57

Example: List insertion

Initially list is sorted: p.next 6= null→ p.prio ≥ p.next.prio

c.prio = x , c.next = null

for all p 6= c do

if p.prio ≤ x then if First(p) then c.next′ = p, First′(c), ¬First′(p) endif; p.next′ = p.next

p.prio > x then case p.next = null then p.next′ := c, c.next′ = null

p.next 6= null ∧ p.next.prio > x then p.next′ = p.next

p.next 6= null ∧ p.next.prio ≤ x then p.next′ = c, c.next′ = p.next

Verification task: After insertion list remains sorted

58

Example: List insertion

Initially list is sorted: p.next 6= null→ p.prio ≥ p.next.prio

c.prio = x , c.next = null

for all p 6= c do

if p.prio ≤ x then if First(p) then c.next′ = p, First′(c), ¬First′(p) endif; p.next′ = p.next

p.prio > x then case p.next = null then p.next′ := c, c.next′ = null

p.next 6= null ∧ p.next.prio > x then p.next′ = p.next

p.next 6= null ∧ p.next.prio ≤ x then p.next′ = c, c.next′ = p.next

Verification task: After insertion list remains sorted

59

Example: List insertion

Initially list is sorted: p.next 6= null→ p.prio ≥ p.next.prio

c.prio = x , c.next = null

for all p 6= c do

if p.prio ≤ x then if First(p) then c.next′ = p, First′(c), ¬First′(p) endif; p.next′ = p.next

p.prio > x then case p.next = null then p.next′ := c, c.next′ = null

p.next 6= null ∧ p.next.prio > x then p.next′ = p.next

p.next 6= null ∧ p.next.prio ≤ x then p.next′ = c, c.next′ = p.next

Verification task: After insertion list remains sorted

60

Example: List insertion

Initially list is sorted: ∀p(p.next 6= null→ p.prio ≥ p.next.prio)

∀p(p 6=null ∧ p 6=c ∧ prio(p)≤x ∧ First(p)→ next′(c)=p ∧ First′(c))

∀p(p 6=null ∧ p 6=c ∧ prio(p)≤x ∧ First(p)→ next′(p)=next(p) ∧ ¬First′(p))

∀p(p 6=null ∧ p 6=c ∧ prio(p)≤x ∧ ¬First(p)→ next′(p)=next(p))

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p)=null→ next′(p)=c

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p)=null→ next′(c)=null)

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p) 6=null ∧ prio(next(p))>x → next′(p)=next(p))

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p) 6=null ∧ prio(next(p))≤x → next′(p)=c

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p) 6=null ∧ prio(next(p))≤x → next′(c)=next(p))

To check: Sorted(next, prio)∧Update(next, next′)∧ p0.next
′ 6=null∧p0.prio6≥p0.next

′.prio |=⊥

We only need to use instances in which variables are

replaced by ground subterms occurring in the problem

61

Example: List insertion

To show:

T2 T2 = T1 ∪ Update(next, next′) T2 ∪ ¬Sorted(next′)
︸ ︷︷ ︸

G

|=⊥

T1 T1 = T0 ∪ Sorted(next)

T0 T0 = (Lists, next)

62

Example: List insertion

To show:

T2 T2 = T1∪ Update(next, next′) T2 ∪ ¬Sorted(next′)
︸ ︷︷ ︸

G

|=⊥

Instantiate: T1∪ Update(next, next′)[G] ∪G |=

Hierarchical reasoning:
︸ ︷︷ ︸

G ′

T1 T1 = T0 ∪ Sorted(next) T1 ∪ G ′(next) |=⊥

T0 T0 = (Lists, next)

63

Example: List insertion

To show:

T2 T2 = T1 ∪ Update(next, next′) T2 ∪ ¬Sorted(next′)
︸ ︷︷ ︸

G

|=⊥

⇓

T1 T1 = T0 ∪ Sorted(next) T1 ∪ G ′(next) |=⊥

⇓

T0 T0 = (Lists, next) T0 ∪ G ′′ |=⊥

64

More general concept

Local Theory Extensions

65

Satisfiability of formulae with quantifiers

Goal: generalize the ideas for extensions of theories

66

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Mon(f) ∀i , j(i < j → f (i) < f (j))

Problems:

• A prover for R ∪ Z does not know about f

• A prover for first-order logic may have problems with the reals and integers

• DPLL(T) cannot be used (Mon, Z,R: non-disjoint signatures)

• SMT provers may have problems with the universal quantifiers

Our goal: reduce search: consider certain instances Mon(f)[G]
without loss of completeness

hierarchical/modular reasoning:
reduce to checking satisfiability of a set of constraints over R ∪ Z

67

Local theory extensions

Solution: Local theory extensions

K set of equational clauses; T0 theory; T1 = T0 ∪ K

(Loc) T0 ⊆ T1 is local, if for ground clauses G ,

T0 ∪K ∪ G |=⊥ iff T0 ∪K[G] ∪ G has no (partial) model

Various notions of locality, depending of the instances to be considered:

stable locality, order locality; extended locality.

68

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Base theory (R ∪ Z) Extension

a < b f (a) = f (b) + 1

∀i , j(i < j → f (i) < f (j))

69

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Base theory (R ∪ Z) Extension

a < b f (a) = f (b) + 1

a < b → f (a) < f (b)

b < a → f (b) < f (a)

Solution 1:

SMT (R ∪ Z ∪ UIF)

70

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Add congruence axioms. Replace pos-terms with new constants

Base theory (R ∪ Z) Extension

a < b f (a) = f (b) + 1

a < b → f (a) < f (b)

b < a → f (b) < f (a)

a = b → f (a) = f (b)

Solution 2:

Hierarchical reasoning

71

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Replace f -terms with new constants

Add definitions for the new constants

Base theory (R ∪ Z) Extension

a < b a1 = b1 + 1

a < b → a1 < b1

b < a → b1 < a1

a = b → a1 = b1

72

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Replace f -terms with new constants

Add definitions for the new constants

Base theory (R ∪ Z) Extension

a < b a1 = f (a)

a1 = b1 + 1 b1 = f (b)

a < b → a1 < b1

b < a → b1 < a1

a = b → a1 = b1

73

Reasoning in local theory extensions

Locality: T0 ∪ K ∪ G |=⊥ iff T0 ∪ K[G] ∪ G |=⊥

Problem: Decide whether T0 ∪ K[G] ∪ G |=⊥

Solution 1: Use SMT (T0+UIF): possible only if K[G] ground

Solution 2: Hierarchic reasoning [VS’05]

reduce to satisfiability in T0: applicable in general

7→ parameterized complexity

74

Example

Simplified version of ETCS Case Study [Jacobs,VS’06, Faber,Jacobs,VS’07]

Number of trains: n ≥ 0 Z

Minimum and maximum speed of trains: 0 ≤ min < max R

Minimum secure distance: lalarm > 0 R

Time between updates: ∆t > 0 R

Train positions before and after update: pos(i), pos′(i) : Z → R

75

Example

Simplified version of ETCS Case Study [Jacobs,VS’06, Faber,Jacobs,VS’07]

Update(pos, pos′) : • ∀i (i = 0→ pos(i) + ∆t∗min ≤ pos′(i) ≤ pos(i) + ∆t∗max)

• ∀i (0 < i < n ∧ pos(i − 1) > 0 ∧ pos(i − 1)− pos(i) ≥ lalarm

→ pos(i) + ∆t ∗ min ≤ pos′(i) ≤ pos(i) + ∆t∗max)

...

76

Example

Safety property: No collisions Safe(pos) : ∀i , j(i<j→pos(i)>pos(j))

Inductive invariant: Safe(pos)∧Update(pos, pos′)∧¬Safe(pos′) |=TS
⊥

where TS is the extension of the (disjoint) combination R ∪ Z

with two functions, pos, pos′ : Z → R

Our idea: Use chains of “instantiation” + reduction.

77

Example

To show:

T2 T2 = T1 ∪ Update(pos, pos′) T2 ∪ ¬Safe(pos′)
︸ ︷︷ ︸

G

|=⊥

T1 T1 = T0 ∪ Safe(pos)

T0 T0 = R ∪ Z

78

Example

To show:

T2 T2 = T1 ∪ Update(pos, pos′) T2 ∪ ¬Safe(pos′)
︸ ︷︷ ︸

G

|=⊥

⇓

T1 T1 = T0 ∪ Safe(pos) T1 ∪ G ′(pos) |=⊥

⇓

T0 T0 = R ∪ Z T0 ∪ G ′′ |=⊥

Φ(c, cpos′ , dpos, n, lalarm, min,max,∆t) |=⊥

Method 1: SAT checking/ Counterexample generation

Method 2: Quantifier elimination

relationships between parameters which guarantee safety

79

More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]

• Take into account also:

− Emergency messages

− Durations

• Specification language: CSP-OZ-DC

− Reduction to satisfiability in theories for which

decision procedures exist

• Tool chain: [Faber, Ihlemann, Jacobs, VS]

CSP-OZ-DC 7→ Transition constr. 7→ Decision procedures (H-PILoT)

80

Example 2: Parametric topology

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

81

Parametricity and modularity

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

Approach:

• Decompose the system in trajectories (linear rail tracks; may overlap)

• Task 1: - Prove safety for trajectories with incoming/outgoing trains

- Conclude that for control rules in which trains have sufficient

freedom (and if trains are assigned unique priorities) safety

of all trajectories implies safety of the whole system

• Task 2: - General constraints on parameters which guarantee safety

82

Parametricity and modularity

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

Data structures:

p1: trains

• 2-sorted pointers

p2: segments

• scalar fields (f :pi→R, g :pi→Z)

• updates efficient decision procedures (H-PiLoT)

83

Incoming and outgoing trains

Example 1: Speed Update

pos(t) < length(segm(t))− d → 0 ≤ spd′(t) ≤ lmax(segm(t))

pos(t) ≥ length(segm(t))− d ∧ alloc(nexts (segm(t))) = tid(t)

→ 0 ≤ spd′(t) ≤ min(lmax(segm(t)), lmax(nexts (segm(t))))

pos(t) ≥ length(segm(t))− d ∧ alloc(nexts (segm(t))) 6= tid(t)

→ spd′(t) = max(spd(t)− decmax, 0)

84

Incoming and outgoing trains

85

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s1 6= nulls , t1 6= nullt , train(s) 6= t1, alloc(s1) = idt(t1)

t 6=t1, ids(segm(t))<ids(s1), nextt (t)=nullt , alloc(s1)=tid(t1)→ next′(t)=t1 ∧ next′(t1)=nullt

t 6=t1, ids(segm(t))<ids(s1), alloc(s1)=tid(t1), nextt (t) 6=nullt , ids(segm(nextt(t)))≤ids(s1)

→ next′(t)=nextt(t)

...
t 6=t1, ids(segm(t))≥ids(s1)→ next′(t)=nextt (t)

86

Incoming and outgoing trains

87

Safety property

Safety property we want to prove: no two trains ever occupy the same track

segment:

(Safe) := ∀t1, t2 segm(t1) = segm(t2) → t1 = t2

In order to prove that (Safe) is an invariant of the system, we need to find a

suitable invariant (Inv(i)) for every control location i of the TCS, and prove:

(Inv(i)) |= (Safe) for all locations i

and that the invariants are preserved under all transitions of the system,

(Inv(i)) ∧ (Update) |= (Inv′(j))

whenever (Update) is a transition from location i to j .

88

Safety property

Need additional invariants.

- generate by hand [Faber, Ihlemann, Jacobs, VS, ongoing]

use the capabilities of H-PILoT of generating counterexamples

- generate automatically [work in progress]

Ground satisfiability problems for pointer data structures

the decision procedures presented before can be used without problems

89

Further extensions (Systems of LHA)

[Damm, Horbach, VS: FroCoS’15] Modularity results and small model

property results for (decoupled) families of linear hybrid automata

Sensors + Communication Channels

Examples:
sideback

back

sidefront

7

1 10

5

3

Car platoon

Safety properties: ∀i1, . . . , ik φsafe(i1, . . . , il)

Collision free: ∀i , j(lane(i)=lane(j) ∧ pos(i)≥pos(j) ∧ i 6=j → pos(i)−pos(j)>d)

90

Model: Families of similar interacting system

Model families {S(i) | i ∈ I} consisting of an unbounded number

of similar interacting systems.

• Model the interaction

• Model the systems S(i)

• Model the topology updates

29

Model: Families of similar interacting systems

Model families {S(i) | i ∈ I} consisting of an unbounded number

of similar interacting systems.

• Model the interaction 7→ structures (I , {p : I → I}p∈P)

P = PS ∪ PN

The functions in P model the way the systems perceive their neighbors

PS sensors: PN : neighborhood links

sideback

back

sidefront

7

1 10

5

3

Car platoon

next next next next

f1

f2
f3

f4

sideback(7) = 3 back(7) = 3

front(7) = nil sidefront(7) = 10

29

Model: Families of similar interacting systems

Model families {S(i) | i ∈ I} consisting of an unbounded number

of similar interacting systems.

• Model the interaction 7→ structures (I , {p : I → I}p∈P)

• Model the systems S(i) 7→ hybrid automata

29

Model: Spatial families of LHA

Model families {S(i) | i ∈ I} consisting of an unbounded number

of similar interacting systems.

• Model the interaction 7→ structures (I , {p : I → I}p∈P)

• Model the systems S(i) 7→ hybrid automata

• Model the topology updates 7→ Topology automaton

Example: Update(front, front′)

∀i
(

i 6=nil ∧ Prop(i) ∧ ¬∃j(ASL(j , i))→ front
′

(i)=nil
)

∀i
(

i 6=nil ∧ Prop(i) ∧ ∃j(ASL(j , i))→ Closestf (front
′

(i), i)
)

∀i
(

i 6=nil ∧ ¬Prop(i)→ front
′

(i)=front(i)
)

ASL(j, i): j 6= nil ∧ lane(j) = lane(i) ∧ pos(j) > pos(i) j is ahead of i on the same lane

Closestf (j, i): ASL(j, i) ∧ ∀k(ASL(k , i)→pos(k) ≥ pos(j)) j is ahead of i ; no car between them.

29

Verification

Is safety property an inductive invariant?

30

Verification

Is safety property an inductive invariant?

Local extensions: use H-PILoT

• Unsatisfiable 7→ Safety invariant

• Satisfiable 7→ Model

30

Verification

Is safety property an inductive invariant?

Local extensions: use H-PILoT

• Unsatisfiable 7→ Safety invariant

• Satisfiable 7→ Model 7→ Simulation [J. Wild, BSc Thesis 2018]

30

Other interesting topics

• Generate invariants

• Verification by abstraction/refinement

31

Abstraction-based Verification

Abstract program

feasible path

location reachable

Concrete program

feasible path

location unreachable location unreachable

check feasibility

⇓

conjunction of constraints: φ(1) ∧ Tr(1, 2) ∧ · · · ∧ Tr(n − 1, n) ∧ ¬safe(n)

- satisfiable: feasible path

- unsatisfiable: refine abstract program s.t. the path is not feasible

[McMillan 2003-2006] use ‘local causes of inconsistency’

7→ compute interpolants

32

Summary

• Decision procedures for various theories/theory combinations

Implemented in most of the existing SMT provers:

Z3: http://z3.codeplex.com/

CVC4: http://cvc4.cs.nyu.edu/web/

Yices: http://yices.csl.sri.com/

• Ideas about how to use them for verification

Decision procedures for other classes of theories/Applications”

Next semester: Seminar “Decision Procedures and Applications”

More details on Specification, Model Checking, Verification:

Every summer (usually end of August):

Summer school “Verification Technology, Systems & Applications”

BSc/MSc Theses in the area

33

