Decision Procedures for Verification

Combinations of Decision Procedures (3)

30.01.2023

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Until now

Combinations of Decision Procedures
The Nelson/Oppen Procedure
(for theories with disjoint signature)
From conjunctions to arbitrary combinations
lazy approach to $\operatorname{DPLL}(\mathrm{T})$

SAT Modulo Theories (SMT)

"Lazy" approaches to SMT: Idea
Example: consider $\mathcal{T}=$ UIF and the following set of clauses:

$$
\underbrace{f(g(a)) \not \approx f(c)}_{\neg P_{1}} \vee \underbrace{g(a) \approx d}_{P_{2}}, \quad \underbrace{g(a) \approx c}_{P_{3}}, \quad \underbrace{c \not \approx d}_{\neg P_{4}}
$$

1. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}\right\}$ to SAT solver

SAT solver returns model $\left[\neg P_{1}, P_{3}, \neg P_{4}\right]$
Theory solver says $\neg P_{1} \wedge P_{3} \wedge \neg P_{4}$ is \mathcal{T}-inconsistent
2. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver

SAT solver returns model [$P_{1}, P_{2}, P_{3}, \neg P_{4}$]
Theory solver says $P_{1} \wedge P_{2} \wedge P_{3} \wedge \neg P_{4}$ is \mathcal{T}-inconsistent
3. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}, \neg P_{1} \vee \neg P_{2} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver SAT solver says UNSAT

SAT Modulo Theories (SMT)

Optimized lazy approach
LA - Check T-consistency only of full propositional models
OLA - Check T-consistency of partial assignment while being built

LA - Given a T-inconsistent assignment M, add $\neg M$ as a clause
OLA

- Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause
LA - Upon a T-inconsistency, add clause and restart
OLA - Upon a T-inconsistency, do conflict analysis of the explanation and Backjump

SAT Modulo Theories (SMT)

"Lazy" approaches to SMT

- Why "lazy"?

Theory information used only lazily, when checking \mathcal{T}-consistency of propositional models

- Characteristics:
+ Modular and flexible
- Theory information does not guide the search (only validates a posteriori)

Tools: CVC-Lite, ICS, MathSAT, TSAT+, Verifun, ...
"Lazy" approaches to SMT

Lazy theory learning:

$$
M, L, M_{1}\|F \Rightarrow \emptyset\| F, \neg L_{1} \vee \cdots \vee \neg L_{n} \vee \neg L \quad \text { if }\left\{\begin{array}{l}
M, L, M_{1} \models F \\
\left\{L_{1}, \ldots, L_{n}\right\} \subseteq M \\
L_{1} \wedge \cdots \wedge L_{n} \wedge L \models \mathcal{T} \perp
\end{array}\right.
$$

Lazy theory learning + no repetitions

$$
M, L, M_{1}\|F \Rightarrow \emptyset\| F, \neg L_{1} \vee \cdots \vee \neg L_{n} \vee \neg L \quad \text { if }\left\{\begin{array}{l}
\left\{L_{1}, \ldots, L_{n}\right\} \subseteq M \\
L_{1} \wedge \cdots \wedge L_{n} \wedge L \models \mathcal{T} \perp \\
\neg L_{1} \vee \cdots \vee \neg L_{n} \vee \neg L \notin F
\end{array}\right.
$$

DPLL(T) Rules

UnitPropagation
$M\|F, C \vee L \Rightarrow M, L\| F, C \vee L \quad$ if $M \models \neg C$, and L undef. in M
Decide
$M\left\|F \Rightarrow M, L^{d}\right\| F$
if L occurs in F, L undef. in M
Fail
$M \| F, C \Rightarrow$ Fail
Backjump
$M, L^{d}, N\left\|F \Rightarrow M, L^{\prime}\right\| F$

Restart/Learn
$M\|F \Rightarrow \emptyset\| F, F^{\prime}$
TPropagation
$M\|F \Rightarrow M, L\| F$
if $M \models \neg C$, no backtrack possible
if $\left\{\begin{array}{l}\text { there is some clause } C \vee L^{\prime} \text { s.t.: } \\ F \models C \vee L^{\prime}, M \models \neg C, \\ L^{\prime} \text { undefined in } M \\ L^{\prime} \text { or } \neg L^{\prime} \text { occurs in } F .\end{array}\right.$
if $F \models F^{\prime}, F^{\prime}$ obtained from M, F
if $M \models \mathcal{T} L$

DPLL(T) Example

Consider again same example with UIF:

$$
\underbrace{f(g(a)) \not \approx f(c)}_{\neg P_{1}} \vee \underbrace{g(a) \approx d}_{P_{2}}, \quad \underbrace{g(a) \approx c}_{P_{3}}, \quad \underbrace{c \not \approx d}_{\neg P_{4}}
$$

\emptyset

$$
\| \neg P_{1} \vee P_{2}, P_{3}, \neg P_{4} \quad \Rightarrow \text { (UnitPropagation) }
$$

$$
P_{3} \quad \| \neg P_{1} \vee P_{2}, P_{3}, \neg P_{4} \quad \Rightarrow \text { (TPropagation) }
$$

$$
P_{3} P_{1} \quad \| \neg P_{1} \vee P_{2}, P_{3}, \neg P_{4} \quad \Rightarrow \text { (UnitPropagation) }
$$

$$
P_{3} P_{1} P_{2} \quad \| \neg P_{1} \vee P_{2}, P_{3}, \neg P_{4} \quad \Rightarrow \text { (TPropagation) }
$$

$$
P_{3} P_{1} P_{2} P_{4} \quad \| \neg P_{1} \vee P_{2}, P_{3}, \neg P_{4} \quad \Rightarrow \text { fail }
$$

No search in this example

Termination

Idea: $\operatorname{DPLL}(T)$ terminates if no clause is learned infinitely many times, since only finitely many such new clauses (built over input literals) exist.

Theorem. There exists no infinite sequence of the form

$$
\emptyset \| F \Rightarrow S_{1} \Rightarrow S_{2} \ldots
$$

if no clause C is learned by Reset \& Learn/Lazy Theory Learning infinitely many times along a sequence.

A similar termination result holds also for the $\operatorname{DPLL}(T)$ approach with Theory Propagation.

Termination

Theorem. There exist no infinite sequences of the form $\emptyset \| F \Rightarrow S_{1} \Rightarrow S_{2} \ldots$

Proof. (Idea) We define a well-founded strict partial ordering \succ on states, and show that each rule application $M\left\|F \Rightarrow M^{\prime}\right\| F^{\prime}$ is decreasing with respect to this ordering, i.e., $M\left\|F \succ M^{\prime}\right\| F^{\prime}$.

Let M be of the form $M_{0}, L_{1}, M_{1}, \ldots L_{p}, M_{p}$, where L_{1}, \ldots, L_{p} are all the decision literals of M. Similarly, let M^{\prime} be $M_{0}^{\prime}, L_{1}^{\prime}, M_{1}^{\prime}, \ldots L_{p^{\prime}}^{\prime}, M_{p^{\prime}}^{\prime}$.
Let N be the number of distinct atoms (propositional variables) in F.
(Note that p, p^{\prime} and the length of M and M^{\prime} are always smaller than or equal to N.)

Termination

Theorem. There exist no infinite sequences of the form $\emptyset \| F \Rightarrow S 1 \Rightarrow \ldots$
Proof. (continued)
Let $m(M)$ be N - length (M) (nr. of literals missing in M for M to be total).
Define: $M_{0} L_{1} M_{1} \ldots L_{p} M_{p}\left\|F \succ M_{0}^{\prime} L_{1}^{\prime} M_{1}^{\prime} \ldots L_{p^{\prime}}^{\prime} M_{p^{\prime}}^{\prime}\right\| F^{\prime}$ if
(i) there is some i with $0 \leq i \leq p, p^{\prime}$ such that

$$
m\left(M_{0}\right)=m\left(M_{0}^{\prime}\right), \ldots m\left(M_{i-1}\right)=m\left(M_{i-1}^{\prime}\right), m\left(M_{i}\right)>m\left(M_{i}^{\prime}\right) \text { or }
$$

(ii) $m\left(M_{0}\right)=m\left(M_{0}^{\prime}\right), \ldots m\left(M_{p}\right)=m\left(M_{p}^{\prime}\right)$ and $m(M)>m\left(M^{\prime}\right)$.

Comparing the number of missing literals in sequences is a strict ordering (irreflexive and transitive) and it is well-founded, and hence this also holds for its lexicographic extension on tuples of sequences of bounded length.

No learning/forgetting: It is easy to see that all Basic DPLL rule applications are decreasing with respect to \succ if fail is added as an additional minimal element. (The rules UnitPropagate and Backjump decrease by case (i) of the definition and Decide decreases by case (ii).)

Termination

Theorem. There exist no infinite sequences of the form $\emptyset \| F \Rightarrow S 1 \Rightarrow \ldots$

Note: Combine learning with basic $\operatorname{DPLL}(\mathrm{T})$: no clause learned infinitely many times.
Forget: For this termination condition to be fulfilled, applying at least one rule of the Basic DPLL system between any two Learn applications does not suffice. It suffices if, in addition, no clause generated with Learning is ever forgotten.

Soundness, Correctness, Termination

Lemma. If $\emptyset\left\|F \Rightarrow{ }^{*} M\right\| F^{\prime}$ then:
(1) All atoms in M and all atoms in F^{\prime} are atoms of F.
(2) M : no literal more than once, no complementary literals
(3) F^{\prime} is logically equivalent to F
(4) if $M=M_{0} L_{1} M_{1} \ldots L_{n} M_{n}$ where L_{i} all decision literals then $F, L_{1}, \ldots, L_{i} \models M_{i}$.

Lemma. If $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Lazy Theory Learning, then:
(1) All literals of F^{\prime} are defined in M
(2) There is no clause C in F^{\prime} such that $M \models \neg C$
(3) M is a model of F.

Soundness, Correctness, Termination

Lemma. If $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Lazy Theory Learning, then M is a \mathcal{T}-model of F.

Theorem. The Lazy Theory learning DPLL system provides a decision procedure for the satisfiability in \mathcal{T} of CNF formulae F, that is:

1. $\emptyset \| F \Rightarrow^{*}$ fail if, and only if, F is unsatisfiable in \mathcal{T}.
2. $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Lazy Theory Learning, if, and only if, F is satisfiable in \mathcal{T}.

Proof
(1) If $\emptyset \| F \Rightarrow^{*}$ fail then there exists state $M \| F^{\prime}$ with $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime} \Rightarrow$ fail, there is no decision literal in M and $M \models \neg C$ for some clause C in F. By the construction of $M, F \models M$, so $F \models \neg C$. Thus F is unsatisfiable.

To prove the converse, if $\emptyset \| F \not \vDash^{*}$ fail then by there must be a state $M \| F^{\prime}$ such that $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$. Then $M \models F$, so F is satisfiable.

Soundness, Correctness, Termination

Lemma. If $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Lazy Theory Learning, then M is a \mathcal{T}-model of F.

Theorem. The Lazy Theory learning DPLL system provides a decision procedure for the satisfiability in \mathcal{T} of CNF formulae F, that is:

1. $\emptyset \| F \Rightarrow^{*}$ fail if, and only if, F is unsatisfiable in \mathcal{T}.
2. $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Lazy Theory Learning, if, and only if, F is satisfiable in \mathcal{T}.

Proof
2. If $\emptyset\left\|F \Rightarrow^{*} M\right\| F$ then F is satisfiable. Conversely, if $\emptyset\left\|F \not \neq^{*} M\right\| F$ then $\emptyset \| F \Rightarrow^{*}$ fail, so F is unsatisfiable.

Termination, Soundness and Completeness

$\operatorname{DPLL}(\mathcal{T})$ with (eager) theory propagation

Lemma. If $\emptyset\|F \Rightarrow M\| F$ then M is \mathcal{T}-consistent.
Proof. This property is true initially, and all rules preserve it, by the fact that $M \models \mathcal{T} L$ if, and only if, $M \cup \neg L$ is \mathcal{T}-inconsistent: the rules only add literals to M that are undefined in M, and Theory Propagate adds all literals L of F that are theory consequences of M, before any literal $\neg L$ making it \mathcal{T}-inconsistent can be added to M by any of the other rules.

Termination, Soundness and Completeness

$\operatorname{DPLL}(\mathcal{T})$ with (eager) theory propagation

Definition. A $\operatorname{DPLL}(\mathcal{T})$ procedure with Eager Theory Propagation for \mathcal{T} is any procedure taking an input CNF F and computing a sequence $\emptyset \| F \Rightarrow{ }^{*} S$ where S is a final state wrt. Theory Propagate and the Basic DPLL system.

Theorem The DPLL system with eager theory propagation provides a decision procedure for the satisfiability in \mathcal{T} of CNF formulae F, that is:

1. $\emptyset \| F \Rightarrow^{*}$ fail if, and only if, F is unsatisfiable in \mathcal{T}.
2. $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Theory Propagate, if, and only if, F is satisfiable in \mathcal{T}.
3. If $\emptyset\|F \Rightarrow M\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Theory Propagate, then M is a \mathcal{T}-model of F.

Literature

Full proofs and further details can be found in:

Robert Nieuwenhuis, Albert Oliveras and Cesare Tinelli:
"Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T)"

Journal of the ACM, Vol. 53, No. 6, November 2006, pp.937-977.

SMT tools

SAT problems

Given: conjunction ϕ of prop. clauses
Task: check if ϕ satisfiable
Method: DPLL

- deterministic choices first
unit resolution
pure literal assignment
- case distinction (splitting)
- heuristics
selection criteria for splitting
backtracking
conflict-driven learning

SMT tools

SAT problems

Given: conjunction ϕ of prop. clauses Task: check if ϕ satisfiable

Method: DPLL

- deterministic choices first
unit resolution
pure literal assignment
- case distinction (splitting)
- heuristics
selection criteria for splitting backtracking conflict-driven learning

SMT problems

Given: conjunction ϕ of clauses
Task: check if $\phi \models \mathcal{T} \perp$
Method: $\operatorname{DPLL}(\mathcal{T})$

- Boolean assignment found using DPLL
- ... and checked for \mathcal{T}-satisfiability
- the assignment can be partial and checked before splitting
- usual heuristics are used: non-chronological backtracking learning

SMT tools

SAT problems

Given: conjunction ϕ of prop. clauses
Task: check if ϕ satisfiable

Method: DPLL

- deterministic choices first unit resolution pure literal assignment
- case distinction (splitting)
- heuristics
selection criteria for splitting backtracking conflict-driven learning

SMT problems

Given: conjunction ϕ of clauses
Task: check if $\phi \models \mathcal{T} \perp$
Method: $\operatorname{DPLL}(\mathcal{T})$

- Boolean assignment found using DPLL
- ... and checked for \mathcal{T}-satisfiability
- the assignment can be partial and checked before splitting
- usual heuristics are used: non-chronological backtracking learning

Systems implementing such specialized satisfiability problems: Yices, Barcelogic Tools, CVC lite,haRVey,Math-SAT,Z3,...are called (S)atisfiability (M)odulo (T)heory solvers.

Satisfiability of formulae with quantifiers

Satisfiability of formulae with quantifiers

In many applications we are interested in testing the satisfiability of formulae containing (universally quantified) variables.

Examples

- check satisfiability of formulae in the Bernays-Schönfinkel class
- check whether a set of (universally quantified) Horn clauses entails a ground clause
- check whether a property is consequence of a set of axioms

Example 1: $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is monotonely increasing and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $g(x)=f(x+x)$ then g is also monotonely increasing

Example 2: If array a is increasingly sorted, and x is inserted before the first position i with $a[i]>x$ then the array remains increasingly sorted.

A theory of arrays

We consider the theory of arrays in a many-sorted setting.

Syntax:

- Sorts: Elem (elements), Array (arrays) and Index (indices, here integers).
- Function symbols: read, write.

$$
\begin{aligned}
& a(\text { read })=\text { Array } \times \text { Index } \rightarrow \text { Element } \\
& a(\text { write })=\text { Array } \times \text { Index } \times \text { Element } \rightarrow \text { Array }
\end{aligned}
$$

Theories of arrays

We consider the theory of arrays in a many-sorted setting.
Theory of arrays $\mathcal{T}_{\text {arrays }}$:

- \mathcal{T}_{i} (theory of indices): Presburger arithmetic
- \mathcal{T}_{e} (theory of elements): arbitrary
- Axioms for read, write

$$
\begin{aligned}
\operatorname{read}(w r i t e(a, i, e), i) & \approx e \\
j \not \approx i \vee \operatorname{read}(\operatorname{write}(a, i, e), j) & =\operatorname{read}(a, j) .
\end{aligned}
$$

Theories of arrays

We consider the theory of arrays in a many-sorted setting.
Theory of arrays $\mathcal{T}_{\text {arrays }}$:

- \mathcal{T}_{i} (theory of indices): Presburger arithmetic
- \mathcal{T}_{e} (theory of elements): arbitrary
- Axioms for read, write

$$
\begin{array}{ccl}
\forall a, i, e & \operatorname{read}(w r i t e(a, i, e), i) & \approx e \\
\forall a, i, j, e & j \not \approx i \vee \operatorname{read}(\operatorname{write}(a, i, e), j) & \approx \operatorname{read}(a, j) .
\end{array}
$$

Fact: Undecidable in general.
Goal: Identify a fragment of the theory of arrays which is decidable.

A decidable fragment

- Index guard a positive Boolean combination of atoms of the form $t \leq u$ or $t=u$ where t and u are either a variable or a ground term of sort Index

Example: $(x \leq 3 \vee x \approx y) \wedge y \leq z$ is an index guard
Example: $x+1 \leq c, \quad x+3 \leq y, \quad x+x \leq 2$ are not index guards.

- Array property formula [Bradley,Manna,Sipma'06] $(\forall i)\left(\varphi_{I}(i) \rightarrow \varphi_{V}(i)\right)$, where:
φ_{l} : index guard
φ_{V} : formula in which any universally quantified i occurs in a direct array read; no nestings
Example: $\forall x, y(c \leq x \leq y \leq d \rightarrow a[x] \leq a[y])$ is an array property formula Example: $\forall x, y(x<y \rightarrow a[x]<a[y])$ is not an array property formula

Array Property Fragment

Definition (The Array Property Fragment) [Bradley,Manna,Sipma'06] The array property fragment consists of all existentially-closed Boolean combinations of array property formulae and quantifier-free $\mathcal{T}_{\text {arrays }}$-formulae. The height of a formula in the fragment is the maximum height of an array property subformula.

Notation: $\quad a[i]:=\operatorname{read}(a, i) \quad a\{k \leftarrow v\}:=\operatorname{write}(a, k, v)$

Example (Array Property Formula)

The following formula is in the array property fragment of $\mathcal{T}_{\text {arrays }}$:

$$
\begin{aligned}
& (\exists a: \operatorname{array})(\exists w, x, y, z, k, I, n: \text { index }) w<x<y<z \wedge 0<k<I<n \wedge I-k>1 \\
& \quad \wedge \operatorname{sorted}(0, n-1, a\{k \leftarrow w\}\{I \leftarrow x\}) \wedge \operatorname{sorted}(0, n-1, a\{k \leftarrow y\}\{I \leftarrow z\})
\end{aligned}
$$

where: sorted (I, u, a) is the condition that the array a is sorted (nondecreasing) between elements I and u and can be described by the formula:

$$
\forall i, j(I \leq i \leq j \leq u \rightarrow a[i] \leq a[j])
$$

Decision Procedure

(Rules should be read from top to bottom)
Step 1: Put F in NNF.

Step 2: Apply the following rule exhaustively to remove writes:

$$
\frac{F[\text { write }(a, i, v)]}{F\left[a^{\prime}\right] \wedge a^{\prime}[i]=v \wedge\left(\forall j . j \neq i \rightarrow a[j]=a^{\prime}[j]\right)} \quad \text { for fresh } a^{\prime}(\text { write })
$$

Given a formula F containing an occurrence of a write term write (a, i, v), we can substitute every occurrence of write(a, i, v) with a fresh variable a^{\prime} and explain the relationship between a^{\prime} and a.

Decision Procedure

Step 3 Apply the following rule exhaustively to remove existential quantification:

$$
\frac{F[\exists i . G[i]]}{F[G[j]]} \text { for fresh } j \text { (exists) }
$$

Existential quantification can arise during Step 1 if the given formula contains a negated array property.

Decision Procedure

Steps 4-6 accomplish the reduction of universal quantification to finite conjunction.

The main idea is to select a set of symbolic index terms on which to instantiate all universal quantifiers.

Theories of arrays

Step 4 From the output F3 of Step 3, construct the index set \mathcal{I} :

$$
\begin{aligned}
\mathcal{I}= & \{\lambda\} \cup \\
& \{t \mid \cdot[t] \in F 3 \text { such that } t \text { is not a universally quantified variable }\} \cup \\
& \{t \mid t \text { occurs as an evar in the parsing of index guards }\}
\end{aligned}
$$

(evar is any constant, ground term, or unquantified variable.)
This index set is the finite set of indices that need to be examined. It includes all terms t that occur in some read (a, t) anywhere in F (unless it is a universally quantified variable) and all terms t that are compared to a universally quantified variable in some index guard.
λ is a fresh constant that represents all other index positions that are not explicitly in \mathcal{I}.

Theories of arrays

Step 5 Apply the following rule exhaustively to remove universal quantification:

$$
\frac{H[\forall \bar{i} . F[i] \rightarrow G[i]]}{H\left[\bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right]} \quad \text { (forall) }
$$

where n is the size of the list of quantified variables \bar{i}.

This is the key step.

It replaces universal quantification with finite conjunction over the index set. The notation $\bar{i} \in \mathcal{I}^{n}$ means that the variables \bar{i} range over all n-tuples of terms in \mathcal{I}.

Theories of arrays

Step 6: From the output F5 of Step 5, construct

$$
F 6: \quad F 5 \wedge \bigwedge_{i \in \mathcal{I} \backslash\{\lambda\}} \lambda \neq i
$$

The new conjuncts assert that the variable λ introduced in Step 4 is unique: it does not equal any other index mentioned in F5.

Step 7: Decide the TA-satisfiability of $F 6$ using the decision procedure for the quantifier free fragment.

Example

Consider the array property formula

$$
F: \text { write }(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])
$$

It contains one array property,

$$
\forall i . i \neq I \rightarrow a[i]=b[i]
$$

index guard: $i \neq I:=(i \leq I-1 \vee i \geq I+1) \quad$ value constraint: $a[i]=b[i]$

Step 1: The formula is already in NNF.
Step 2: We rewrite F as:

$$
\begin{aligned}
F 2: & \\
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i]) \\
& \wedge a^{\prime}[I]=v \wedge\left(\forall j . j \neq I \rightarrow a[j]=a^{\prime}[j]\right) .
\end{aligned}
$$

Example

Consider the array property formula

$$
F: \text { write }(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])
$$

Step 2: We rewrite F as:
F2: $\quad a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])$

$$
\wedge a^{\prime}[I]=v \wedge\left(\forall j . j \neq I \rightarrow a[j]=a^{\prime}[j]\right)
$$

$$
\begin{array}{lll}
\text { index guards: } & i \neq 1:=(i \leq 1-1 \vee i \geq 1+1) & \\
& \text { value constraint: } a[i]=b[i] \\
& j \neq 1:=(j \leq 1-1 \vee j \geq 1+1) & \text { value constraint: } a[i]=a^{\prime}[j]
\end{array}
$$

Step 3: F2 does not contain any existential quantifiers $\mapsto F$ F $=\mathrm{F}$ 2.
Step 4: The index set is

$$
\mathcal{I}=\{\lambda\} \cup\{k\} \cup\{I, I-1, I+1\}=\{\lambda, k, I, I-1, I+1\}
$$

Example

Consider the array property formula
$F:$ write $(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])$
Step 3:
F3:

$$
\begin{aligned}
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i]) \\
& \wedge a^{\prime}[I]=v \wedge\left(\forall j . j \neq I \rightarrow a[j]=a^{\prime}[j]\right) .
\end{aligned}
$$

Step 4: $\mathcal{I}=\{\lambda, k, I, I-1, I+1\}$

Step 5: we replace universal quantification as follows:
F5:

$$
\begin{aligned}
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge \bigwedge_{i \in \mathcal{I}}(i \neq I \rightarrow a[i]=b[i]) \\
& \wedge a^{\prime}[I]=v \wedge \bigwedge_{i \in \mathcal{I}}\left(j \neq I \rightarrow a[j]=a^{\prime}[j]\right) .
\end{aligned}
$$

Example

Consider the array property formula
$F:$ write $(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])$

$$
\mathcal{I}=\{\lambda, k, I, I-1, I+1\}
$$

Step 5 (continued) Expanding produces:
$F 5^{\prime}$:

$$
\begin{aligned}
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge \\
& (\lambda \neq I \rightarrow a[\lambda]=b[\lambda]) \wedge(k \neq I \rightarrow a[k]=b[k]) \wedge(I \neq I \rightarrow a[I]=b[I]) \\
& (I-1 \neq I \rightarrow a[I-1]=b[I-1]) \wedge(I+1 \neq I \rightarrow a[I+1]=b[I+1]) \wedge \\
& a^{\prime}[I]=v \wedge\left(\lambda \neq I \rightarrow a[\lambda]=a^{\prime}[\lambda]\right) \wedge\left(k \neq I \rightarrow a[k]=a^{\prime}[k]\right) \wedge \\
& \left(I \neq I \rightarrow a[I]=a^{\prime}[I]\right) \wedge\left(I-1 \neq I \rightarrow a[I-1]=a^{\prime}[I-1]\right) \wedge \\
& \left(I+1 \neq I \rightarrow a[I+1]=a^{\prime}[I+1]\right) .
\end{aligned}
$$

Example

Consider the array property formula
$F:$ write $(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])$

$$
\mathcal{I}=\{\lambda\} \cup\{k\} \cup\{I, I-1, I+1\}=\{\lambda, k, I, I-1, I+1\}
$$

Step 5 (continued): Simplifying produces

$$
\begin{aligned}
F^{\prime \prime} 5: & \\
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\lambda \neq I \rightarrow a[\lambda]=b[\lambda]) \\
& \wedge(k \neq I \rightarrow a[k]=b[k]) \wedge a[I-1]=b[I-1] \wedge a[I+1]=b[I+1] \\
& \wedge a^{\prime}[I]=v \wedge\left(\lambda \neq I \rightarrow a[\lambda]=a^{\prime}[\lambda]\right) \\
& \wedge\left(k \neq I \rightarrow a[k]=a^{\prime}[k]\right) \wedge a[I-1]=a^{\prime}[I-1] \wedge a[I+1]=a^{\prime}[I+1] .
\end{aligned}
$$

Example

Consider the array property formula
$F:$ write $(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])$

Step 6 distinguishes λ from other members of I:
F6:

$$
\begin{aligned}
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\lambda \neq I \rightarrow a[\lambda]=b[\lambda]) \\
& \wedge(k \neq I \rightarrow a[k]=b[k]) \wedge a[I-1]=b[I-1] \wedge a[I+1]=b[I+1] \\
& \wedge a^{\prime}[I]=v \wedge\left(\lambda \neq I \rightarrow a[\lambda]=a^{\prime}[\lambda]\right) \\
& \wedge\left(k \neq I \rightarrow a[k]=a^{\prime}[k]\right) \wedge a[I-1]=a^{\prime}[I-1] \wedge a[I+1]=a^{\prime}[I+1] \\
& \wedge \lambda \neq k \wedge \lambda \neq I \wedge \lambda \neq I-1 \wedge \lambda \neq I+1
\end{aligned}
$$

Example

Consider the array property formula

$$
F: \text { write }(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])
$$

Step 6 Simplifying, we have

$$
\begin{aligned}
F^{\prime} 6: & a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge a[\lambda]=b[\lambda] \\
& \wedge a[k]=b[k] \wedge a[I-1]=b[I-1] \wedge a[I+1]=b[I+1] \\
& \wedge a^{\prime}[I]=v \wedge a[\lambda]=a^{\prime}[\lambda] \\
& \wedge\left(k \neq I \rightarrow a[k]=a^{\prime}[k]\right) \wedge a[I-1]=a^{\prime}[I-1] \wedge a[I+1]=a^{\prime}[I+1] \\
& \wedge \lambda \neq k \wedge \lambda \neq I \wedge \lambda \neq I-1 \wedge \lambda \neq I+1 .
\end{aligned}
$$

We can use for instance $\operatorname{DPLL}(\mathrm{T})$.
Alternative: Case distinction. There are two cases to consider.
(1) If $k=l$, then $a^{\prime}[I]=v$ and $a^{\prime}[k]=b[k]$ imply $b[k]=v$, yet $b[k] \neq v$.
(2) If $k \neq 1$, then $a[k]=v$ and $a[k]=b[k]$ imply $b[k]=v$, but again $b[k] \neq v$.

Hence, F'6 is TA-unsatisfiable, indicating that F is TA-unsatisfiable.

Soundness and Completeness

Theorem (Soundness and Completeness)
Consider a formula F from the array property fragment. The output F6 of Step 6 is $T_{\text {arrays-equisatisfiable to }}$ F.

Proof

(Soundness) Step 1-6 preserve satisfiability
($\mathrm{F} i$ is a logical consequence of $\mathrm{Fi}-1$).

Soundness and Completeness

Theorem (Soundness and Completeness)
Consider a formula F from the array property fragment. The output F6 of Step 6 is $T_{\text {arrays-equisatisfiable to }} \mathrm{F}$.

Proof (Completeness)

Step 6: From the output F5 of Step 5, construct

$$
F 6: \quad F 5 \wedge \bigwedge_{i \in \mathcal{I} \backslash\{\lambda\}} \lambda \neq i
$$

Assume that F6 is satisfiabile. Clearly F5 has a model.

Soundness and Completeness

Theorem (Soundness and Completeness)
Consider a formula F from the array property fragment. The output F6 of Step 6 is $T_{\text {arrays-equisatisfiable to }} \mathrm{F}$.

Proof (Completeness)

Step 5 Apply the following rule exhaustively to remove universal quantification:

$$
\frac{H[\forall \bar{i} . F[i] \rightarrow G[i]]}{H\left[\bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right]} \quad \text { (forall) }
$$

Assume that $F 5$ is satisfiabile. Let $\mathcal{A}=\left(\mathbb{Z}\right.$, Elem, $\left.\left\{a_{A}\right\}_{a \in \operatorname{Arrays}}, \ldots\right)$ be a model for F 5 . Construct a model \mathcal{B} for $F 4$ as follows.

For $x \in \mathbb{Z}: I(x)(u(x))$ closest left (right) neighbor of x in \mathcal{I}.
$a_{\mathcal{B}}(x)= \begin{cases}a_{\mathcal{A}}(I(x)) & \text { if } x-I(x) \leq u(x)-x \text { or } u(x)=\infty \\ a_{\mathcal{A}}(u(x)) & \text { if } x-I(x)>u(x)-x \text { or } I(x)=-\infty\end{cases}$

Soundness and Completeness

Theorem (Soundness and Completeness)
Consider a formula F from the array property fragment. The output F6 of Step 6 is $T_{\text {arrays-equisatisfiable to }} \mathrm{F}$.

Proof (Completeness)
Step 3 Apply the following rule exhaustively to remove existential quantification:

$$
\frac{F[\exists i . G[i]]}{F[G[j]]} \text { for fresh } j \text { (exists) }
$$

If F3 has model then F2 has model

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment. The output F6 of Step 6 is $T_{\text {arrays }}$-equisatisfiable to F.

Proof (Completeness)

Step 2: Apply the following rule exhaustively to remove writes:

$$
\frac{F[\text { write }(a, i, v)]}{F\left[a^{\prime}\right] \wedge a^{\prime}[i]=v \wedge\left(\forall j . j \neq i \rightarrow a[j]=a^{\prime}[j]\right)} \quad \text { for fresh } a^{\prime}(\text { write })
$$

Given a formula F containing an occurrence of a write term write(a, i, v), we can substitute every occurrence of write (a, i, v) with a fresh variable a^{\prime} and explan the relationship between a^{\prime} and a.

If F2 has a model then F1 has a model.
Step 1: Put F in NNF: NNF F1 is equivalent to F.

Theories of arrays

Theorem (Complexity) Suppose ($T_{\text {index }} \cup T_{\text {elem }}$)-satisfiability is in NP. For sub-fragments of the array property fragment in which formulae have bounded-size blocks of quantifiers, $T_{\text {arrays }}$-satisfiability is NP-complete.

Proof NP-hardness is clear.
That the problem is in NP follows easily from the procedure: instantiating a block of n universal quantifiers quantifying subformula G over index set I produces $|I| \cdot n$ new subformulae, each of length polynomial in the length of G. Hence, the output of Step 6 is of length only a polynomial factor greater than the input to the procedure for fixed n.

Program verification

$$
\begin{aligned}
& \text { Example: Does BubBLESORT return } \\
& \left.\qquad \begin{array}{l}
\text { a sorted array? } \\
\text { int [] BubBLESort(int[] a) }\{ \\
\text { int } i, j, t ; \\
\text { for }(i:=|a|-1 ; i>0 ; i:=i-1)\{ \\
\quad \text { for }(j:=0 ; j<i ; j:=j+1)\{ \\
\quad \text { if }(a[j]>a[j+1])\{t:=a[j] ; \\
\\
\qquad a[j]:=a[j+1] ; \\
\\
\text { \}\} return } a\}
\end{array} \quad a[j+1]:=t\right\} ;
\end{aligned}
$$

Program Verification

```
-1\leqi< |a|^
partitioned(a, 0,i,i+1, |a| - 1)^
sorted(a,i, |a| - 1)
```

```
-1\leqi< |a|^0\leqj\leqi^
```

-1\leqi< |a|^0\leqj\leqi^
partitioned(a, 0,i,i+1, |a| - 1)^
partitioned(a, 0,i,i+1, |a| - 1)^
sorted(a,i, |a| - 1)
sorted(a,i, |a| - 1)
partitioned(a, 0,j-1,j,j) C C2

```
partitioned(a, 0,j-1,j,j) C C2
```

> Example: Does BubbleSort return a sorted array?

Generate verification conditions and prove that they are valid Predicates:

- $\operatorname{sorted}(a, l, u): \quad \forall i, j(I \leq i \leq j \leq u \rightarrow a[i] \leq a[j])$
- partitioned $\left(a, I_{1}, u_{1}, l_{2}, u_{2}\right): \quad \forall i, j\left(I_{1} \leq i \leq u_{1} \leq I_{2} \leq j \leq u_{2} \rightarrow a[i] \leq a[j]\right)$

Program Verification

```
-1\leqi< |a|^
partitioned(a, 0,i,i+1, |a| - 1)^
sorted(a,i, |a| - 1)
```

```
-1\leqi< |a|^0\leqj\leqi^
```

-1\leqi< |a|^0\leqj\leqi^
partitioned(a, 0,i,i+1, |a| - 1)^
partitioned(a, 0,i,i+1, |a| - 1)^
sorted(a,i,|a| - 1)
sorted(a,i,|a| - 1)
partitioned(a, 0,j-1,j,j) C

```
partitioned(a, 0,j-1,j,j) C
```


Example: Does BubbleSort return

 a sorted array?$$
\begin{aligned}
& \text { int [] BubbleSort(int[] a) \{ } \\
& \text { int } i, j, t ; \\
& \text { for }(i:=|a|-1 ; i>0 ; i:=i-1)\{ \\
& \quad \text { for }(j:=0 ; j<i ; j:=j+1)\{ \\
& \quad \text { if }(a[j]>a[j+1])\{t:=a[j] \\
& \qquad \begin{array}{l}
a[j]:=a[j+1] ; \\
\\
\text { \}\} return } a\}
\end{array}
\end{aligned}
$$

Generate verification conditions and prove that they are valid Predicates:

- $\operatorname{sorted}(a, I, u): \quad \forall i, j(I \leq i \leq j \leq u \rightarrow a[i] \leq a[j])$
- partitioned $\left(a, l_{1}, u_{1}, l_{2}, u_{2}\right): \quad \forall i, j\left(I_{1} \leq i \leq u_{1} \leq l_{2} \leq j \leq u_{2} \rightarrow a[i] \leq a[j]\right)$

To prove: $C_{2}(a) \wedge$ Update $\left(a, a^{\prime}\right) \rightarrow C_{2}\left(a^{\prime}\right)$

Another Situation

Insertion of an element c in a sorted array a of length n

$$
\begin{aligned}
& \text { for }(i:=1 ; i \leq n ; i:=i+1)\{ \\
& \text { if } a[i] \geq c\{n:=n+1 \\
& \text { for }(j:=n ; j>i ; j:=j-1)\{a[i]:=a[i-1]\} \\
& a[i]:=c \text {; return } a \\
& \text { \}\} } a[n+1]:=c \text {; return } a
\end{aligned}
$$

Task:
If the array was sorted before insertion it is sorted also after insertion.
$\operatorname{Sorted}(a, n) \wedge \operatorname{Update}\left(a, n, a^{\prime}, n^{\prime}\right) \wedge \neg \operatorname{Sorted}\left(a^{\prime}, n^{\prime}\right) \models \mathcal{T} \perp ?$

Another Situation

Task:

If the array was sorted before insertion it is sorted also after insertion.
$\operatorname{Sorted}(a, n) \wedge \operatorname{Update}\left(a, n, a^{\prime}, n^{\prime}\right) \wedge \neg \operatorname{Sorted}\left(a^{\prime}, n^{\prime}\right) \models \mathcal{T} \perp$?

$$
\begin{array}{ll}
\text { Sorted }(a, n) & \forall i, j(1 \leq i \leq j \leq n \rightarrow a[i] \leq a[j]) \\
\text { Update }\left(a, n, a^{\prime}, n^{\prime}\right) & \forall i\left((1 \leq i \leq n \wedge a[i]<c) \rightarrow a^{\prime}[i]=a[i]\right) \\
& \forall i\left(\left(c \leq a(1) \rightarrow a^{\prime}[1]:=c\right)\right. \\
& \forall i\left(\left(a[n]<c \rightarrow a^{\prime}[n+1]:=c\right)\right. \\
& \forall i\left((1 \leq i-1 \leq i \leq n \wedge a[i-1]<c \wedge a[i] \geq c) \rightarrow\left(a^{\prime}[i]=c\right)\right. \\
& \forall i\left(\left(1 \leq i-1 \leq i \leq n \wedge a[i-1] \geq c \wedge a[i] \geq c \rightarrow a^{\prime}[i]:=a[i-1]\right)\right. \\
& n^{\prime}:=n+1
\end{array}
$$

$\left.\neg \operatorname{Sorted}\left(a^{\prime}, n^{\prime}\right) \quad \exists k, I\left(1 \leq k \leq I \leq n^{\prime} \wedge a^{\prime} k\right]>a^{\prime}[/]\right)$

Beyond the array property fragment

Extension: New arrays defined by case distinction $-\operatorname{Def}\left(f^{\prime}\right)$

$$
\begin{aligned}
\forall \bar{x}\left(\phi_{i}(\bar{x}) \rightarrow f^{\prime}(\bar{x})=s_{i}(\bar{x})\right) & i \in I, \text { where } \phi_{i}(\bar{x}) \wedge \phi_{j}(\bar{x}) \models \mathcal{T}_{0} \perp \text { for } i \neq j(1) \\
\forall \bar{x}\left(\phi_{i}(\bar{x}) \rightarrow t_{i}(\bar{x}) \leq f^{\prime}(\bar{x}) \leq s_{i}(\bar{x})\right) & i \in I, \text { where } \phi_{i}(\bar{x}) \wedge \phi_{j}(\bar{x}) \models \mathcal{T}_{0} \perp \text { for } i \neq j(2)
\end{aligned}
$$

where s_{i}, t_{i} are terms over the signature Σ such that $\mathcal{T}_{0} \models \forall \bar{x}\left(\phi_{i}(\bar{x}) \rightarrow t_{i}(\bar{x}) \leq s_{i}(\bar{x})\right)$ for all $i \in I$.
$\mathcal{T}_{0} \subseteq \mathcal{T}_{0} \wedge \operatorname{Def}\left(f^{\prime}\right)$ has the property that for every set G of ground clauses in which there are no nested applications of f^{\prime} :

$$
\mathcal{T}_{0} \wedge \operatorname{Def}\left(f^{\prime}\right) \wedge G \models \perp \quad \text { iff } \quad \mathcal{T}_{0} \wedge \operatorname{Def}\left(f^{\prime}\right)[G] \wedge G
$$

(sufficient to use instances of axioms in $\operatorname{Def}\left(f^{\prime}\right)$ which are relevant for G)

- Some of the syntactic restrictions of the array property fragment can be lifted

Pointer Structures

[McPeak, Necula 2005]

- pointer sort p, scalar sort s; pointer fields $(p \rightarrow p)$; scalar fields $(p \rightarrow s)$;
- axioms: $\forall p \mathcal{E} \vee \mathcal{C}$; \mathcal{E} contains disjunctions of pointer equalities \mathcal{C} contains scalar constraints

Assumption: If $f_{1}\left(f_{2}\left(\ldots f_{n}(p)\right)\right)$ occurs in axiom, the axiom also contains:

$$
\left.p=\operatorname{null} \vee f_{n}(p)=\text { null } \vee \cdots \vee f_{2}\left(\ldots f_{n}(p)\right)\right)=\text { null }
$$

Example: doubly-linked lists; ordered elements

$$
\begin{aligned}
& \forall p(p \neq \text { null } \wedge p . \mathrm{next} \neq \text { null } \rightarrow \text { p.next.prev }=p) \\
& \forall p(p \neq \text { null } \wedge p \text {. prev } \neq \text { null } \rightarrow p . \text { prev.next }=p) \\
& \forall p(p \neq \text { null } \wedge p . \text { next } \neq \text { null } \rightarrow p \text {.info } \leq p . \text { next.info })
\end{aligned}
$$

Pointer Structures

[McPeak, Necula 2005]

- pointer sort p, scalar sort s; pointer fields $(p \rightarrow p)$; scalar fields ($p \rightarrow s$);
- axioms: $\forall p \mathcal{E} \vee \mathcal{C}$; \mathcal{E} contains disjunctions of pointer equalities \mathcal{C} contains scalar constraints

Assumption: If $f_{1}\left(f_{2}\left(\ldots f_{n}(p)\right)\right)$ occurs in axiom, the axiom also contains: $p=\operatorname{null} \vee f_{n}(p)=$ null $\left.\vee \cdots \vee f_{2}\left(\ldots f_{n}(p)\right)\right)=$ null

Theorem. K set of clauses in the fragment above. Then for every set G of ground clauses, $(K \cup G) \cup \mathcal{T}_{s} \models \perp$ iff $K^{[G]} \cup \mathcal{T}_{s} \vDash \perp$ where $K^{[G]}$ is the set of instances of K in which the variables are replaced by subterms in G.

Example: A theory of doubly-linked lists

$\forall p(p \neq$ null $\wedge p$.next \neq null $\rightarrow p$.next. prev $=p)$
$\forall p(p \neq$ null $\wedge p . \operatorname{prev} \neq$ null $\rightarrow p$. prev. next $=p)$
$\wedge c \neq$ null $\wedge c$. next \neq null $\wedge d \neq$ null $\wedge d$. next \neq null $\wedge c$. next $=d$. next $\wedge c \neq d \quad \vDash \perp$

Example: A theory of doubly-linked lists

$(c \neq$ null $\wedge c$. next \neq null $\rightarrow c$. next.prev $=c) \quad(c$. next \neq null $\wedge c$. next.next \neq null $\rightarrow c$. next.next.prev $=c . n e x$ $(d \neq$ null $\wedge d$. next \neq null $\rightarrow d$. next.prev $=d) \quad(d$. next \neq null $\wedge d$. next.next \neq null $\rightarrow d$. next.next.prev $=d$. ne
$\wedge c \neq$ null $\wedge c$. next \neq null $\wedge d \neq$ null $\wedge d$. next \neq null $\wedge c$. next $=d$. next $\wedge c \neq d \quad \perp$

Example: List insertion

Initially list is sorted: p.next \neq null $\rightarrow p$.prio $\geq p$.next.prio

$$
c . \text { prio }=x, c . \text { next }=\text { null }
$$

for all $p \neq c$ do
if p.prio $\leq x$ then if $\operatorname{First}(p)$ then c. next $^{\prime}=p$, First $^{\prime}(c), \neg \operatorname{First}^{\prime}(p)$ endif; p. next $^{\prime}=p$.next p.prio $>x$ then case p.next $=$ null then p. next $^{\prime}:=c, c . n e x t^{\prime}=$ null

$$
p . \text { next } \neq \text { null } \wedge p \text {.next.prio }>x \text { then } p . \text { next }^{\prime}=p . \text { next }
$$

$$
p . \text { next } \neq \text { null } \wedge p \text {.next.prio } \leq x \text { then } p . \text { next }^{\prime}=c, c . \text { next }^{\prime}=p . \text { nex }
$$

Verification task: After insertion list remains sorted

Example: List insertion

Initially list is sorted: p.next \neq null $\rightarrow p$.prio \geq p.next.prio
c.prio $=x, c$.next $=$ null
for all $p \neq c$ do
if p.prio $\leq x$ then if $\operatorname{First}(p)$ then c. next $^{\prime}=p$, First $^{\prime}(c), \neg$ First $^{\prime}(p)$ endif; p. next $^{\prime}=p$.next p.prio $>x$ then case p.next $=$ null then p. next $^{\prime}:=c, c . n e x t^{\prime}=$ null

$$
p . \text { next } \neq \text { null } \wedge p \text {.next.prio }>x \text { then } p . \text { next }^{\prime}=p . \text { next }
$$

p.next \neq null $\wedge p$.next.prio $\leq x$ then p. next $^{\prime}=c, c$. next $^{\prime}=p$.next
Verification task: After insertion list remains sorted

Example: List insertion

Initially list is sorted: p.next \neq null $\rightarrow p$.prio \geq p.next.prio
c.prio $=x, c$.next $=$ null
for all $p \neq c$ do
if p.prio $\leq x$ then if $\operatorname{First}(p)$ then c. next $^{\prime}=p$, First $^{\prime}(c), \neg \operatorname{First}^{\prime}(p)$ endif; p. next $^{\prime}=p$.next p.prio $>x$ then case p.next $=$ null then p. next $^{\prime}:=c, c . n e x t^{\prime}=$ null

$$
p . \text { next } \neq \text { null } \wedge p \text {.next.prio }>x \text { then } p . \text { next }^{\prime}=p . \text { next }
$$

$$
p . \text { next } \neq \text { null } \wedge p \text {.next.prio } \leq x \text { then } p . \text { next }^{\prime}=c, c . \text { next }^{\prime}=p . \text { nex }
$$

Verification task: After insertion list remains sorted

Example: List insertion

Initially list is sorted: $\forall p$ (p.next \neq null $\rightarrow p$.prio $\geq p$.next. prio $)$

```
\(\forall p\left(p \neq\right.\) null \(\wedge p \neq c \wedge \operatorname{prio}(p) \leq x \wedge\) First \((p) \rightarrow \operatorname{next}^{\prime}(c)=p \wedge\) First \(\left.^{\prime}(c)\right)\)
\(\forall p\left(p \neq \operatorname{null} \wedge p \neq c \wedge \operatorname{prio}(p) \leq x \wedge \operatorname{First}(p) \rightarrow \operatorname{next}^{\prime}(p)=\operatorname{next}(p) \wedge \neg \operatorname{First}^{\prime}(p)\right)\)
\(\forall p\left(p \neq\right.\) null \(\left.\wedge p \neq c \wedge \operatorname{prio}(p) \leq x \wedge \neg \operatorname{First}(p) \rightarrow \operatorname{next}^{\prime}(p)=\operatorname{next}(p)\right)\)
\(\forall p\left(p \neq\right.\) null \(\wedge p \neq c \wedge \operatorname{prio}(p)>x \wedge \operatorname{next}(p)=\operatorname{null} \rightarrow \operatorname{next}^{\prime}(p)=c\)
\(\forall p\left(p \neq \operatorname{null} \wedge p \neq c \wedge \operatorname{prio}(p)>x \wedge \operatorname{next}(p)=\operatorname{null} \rightarrow \operatorname{next}^{\prime}(c)=\mathrm{null}\right)\)
\(\forall p\left(p \neq \operatorname{null} \wedge p \neq c \wedge \operatorname{prio}(p)>x \wedge \operatorname{next}(p) \neq \operatorname{null} \wedge \operatorname{prio}(\operatorname{next}(p))>x \rightarrow \operatorname{next}^{\prime}(p)=\operatorname{next}(p)\right)\)
\(\forall p(p \neq\) null \(\wedge p \quad\) We only need to use instances in which variables are \(\quad p)=c\)
\(\forall p(p \neq\) null \(\wedge p \quad\) replaced by ground subterms occurring in the problem \(\quad(c)=\operatorname{next}(p))\)
```

To check: Sorted (next, prio) \wedge Update $\left(\right.$ next, next $\left.^{\prime}\right) \wedge p_{0}$. next \neq null $\wedge p_{0}$. prio $\nsupseteq p_{0}$. next ${ }^{\prime}$. prio $\models \perp$

Example: List insertion

$$
\mathcal{T}_{1}=\mathcal{T}_{0} \cup \operatorname{Sorted}(\text { next })
$$

$$
\mathcal{T}_{0}=(\text { Lists, next })
$$

To show:

$\mathcal{T}_{2} \cup \underbrace{\neg \text { Sorted }\left(\text { next }^{\prime}\right)}_{G} \models \perp$

Example: List insertion

Example: List insertion

$$
\begin{gathered}
\text { To show: } \\
\mathcal{T}_{2} \cup \underbrace{\neg \text { Sorted }\left(\text { next }^{\prime}\right)}_{G} \models \perp \\
\Downarrow \\
\mathcal{T}_{1} \cup G^{\prime}(\text { next }) \models \perp \\
\Downarrow \\
\mathcal{T}_{0} \cup G^{\prime \prime} \models \perp
\end{gathered}
$$

More general concept

Local Theory Extensions

Satisfiability of formulae with quantifiers

Goal: generalize the ideas for extensions of theories

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \vDash \perp
$$

$$
\operatorname{Mon}(f) \quad \forall i, j(i<j \rightarrow f(i)<f(j))
$$

Problems:

- A prover for $\mathbb{R} \cup \mathbb{Z}$ does not know about f
- A prover for first-order logic may have problems with the reals and integers
- DPLL(T) cannot be used (Mon, \mathbb{Z}, \mathbb{R} : non-disjoint signatures)
- SMT provers may have problems with the universal quantifiers

Our goal: reduce search: consider certain instances Mon $(f)[G]$ without loss of completeness
hierarchical/modular reasoning: reduce to checking satisfiability of a set of constraints over $\mathbb{R} \cup \mathbb{Z}$

Local theory extensions

Solution: Local theory extensions
\mathcal{K} set of equational clauses; \mathcal{T}_{0} theory; $\mathcal{T}_{1}=\mathcal{T}_{0} \cup \mathcal{K}$

$$
\begin{array}{ll}
\text { (Loc) } & \mathcal{T}_{0} \subseteq \mathcal{T}_{1} \text { is local, if for ground clauses } G \\
& \mathcal{T}_{0} \cup \mathcal{K} \cup G \models \perp \text { iff } \mathcal{T}_{0} \cup \mathcal{K}[G] \cup G \text { has no (partial) model }
\end{array}
$$

Various notions of locality, depending of the instances to be considered: stable locality, order locality; extended locality.

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \vDash \perp
$$

Base theory $(\mathbb{R} \cup \mathbb{Z})$	Extension
$a<b$	$f(a)=f(b)+1$
	$\forall i, j(i<j \rightarrow f(i)<f(j))$

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \models \perp
$$

Extension is local \mapsto replace axiom with ground instances

Base theory $(\mathbb{R} \cup \mathbb{Z})$	Extension	
$a<b$	$f(a)=f(b)+1$	Solution 1:
	$a<b \rightarrow f(a)<f(b)$	SMT $(\mathbb{R} \cup \mathbb{Z} \cup$ UIF $)$
	$b<a \rightarrow f(b)<f(a)$	

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \models \perp
$$

Extension is local \mapsto replace axiom with ground instances
Add congruence axioms. Replace pos-terms with new constants

Base theory $(\mathbb{R} \cup \mathbb{Z})$	Extension	
$a<b$	$f(a)=f(b)+1$	Solution 2:
	$a<b \rightarrow f(a)<f(b)$	Hierarchical reasoning
	$b<a \rightarrow f(b)<f(a)$	
	$a=b \rightarrow f(a)=f(b)$	

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \vDash \perp
$$

Extension is local \mapsto replace axiom with ground instances
Replace f-terms with new constants
Add definitions for the new constants

Base theory $(\mathbb{R} \cup \mathbb{Z})$	Extension
$a<b$	$a_{1}=b_{1}+1$
	$a<b \rightarrow a_{1}<b_{1}$
	$b<a \rightarrow b_{1}<a_{1}$
	$a=b \rightarrow a_{1}=b_{1}$

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \models \perp
$$

Extension is local \mapsto replace axiom with ground instances
Replace f-terms with new constants
Add definitions for the new constants

Base theory $(\mathbb{R} \cup \mathbb{Z})$	Extension
$a<b$	$a_{1}=f(a)$
$a_{1}=b_{1}+1$	$b_{1}=f(b)$
$a<b \rightarrow a_{1}<b_{1}$	
$b<a \rightarrow b_{1}<a_{1}$	
$a=b \rightarrow a_{1}=b_{1}$	

Reasoning in local theory extensions

$$
\text { Locality: } \quad \mathcal{T}_{0} \cup \mathcal{K} \cup G \models \perp \quad \text { iff } \quad \mathcal{T}_{0} \cup \mathcal{K}[G] \cup G \models \perp
$$

Problem: Decide whether $\mathcal{T}_{0} \cup \mathcal{K}[G] \cup G \models \perp$
Solution 1: Use $\operatorname{SMT}\left(\mathcal{T}_{0}+U I F\right)$: possible only if $\mathcal{K}[G]$ ground

Solution 2: Hierarchic reasoning [VS'05]
reduce to satisfiability in \mathcal{T}_{0} : applicable in general
\mapsto parameterized complexity

Example

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber,Jacobs,VS'07]

European Train Control System

Number of trains:

$$
n \geq 0 \quad \mathbb{Z}
$$

Minimum and maximum speed of trains: $0 \leq \min <\max \quad \mathbb{R}$
Minimum secure distance:
$l_{\text {alarm }}>0$
\mathbb{R}
Time between updates:
$\Delta t>0 \quad \mathbb{R}$
Train positions before and after update:

$$
\operatorname{pos}(i), \operatorname{pos}^{\prime}(i) \quad: \mathbb{Z} \rightarrow \mathbb{R}
$$

Example

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber,Jacobs,VS'07]

European Train Control System

Update(pos, pos') :

- $\forall i\left(i=0 \rightarrow \operatorname{pos}(i)+\Delta t * \min \leq \operatorname{pos}^{\prime}(i) \leq \operatorname{pos}(i)+\Delta t * \max \right)$
- $\forall i\left(0<i<n \wedge \operatorname{pos}(i-1)>0 \wedge \operatorname{pos}(i-1)-\operatorname{pos}(i) \geq l_{\text {alarm }}\right.$ $\left.\rightarrow \operatorname{pos}(i)+\Delta t * \min \leq \operatorname{pos}^{\prime}(i) \leq \operatorname{pos}(i)+\Delta t * \max \right)$

Example

Safety property: No collisions

$$
\text { Safe(pos): } \forall i, j(i<j \rightarrow \operatorname{pos}(i)>\operatorname{pos}(j))
$$

Inductive invariant: \quad Safe(pos) \wedge Update $\left(\right.$ pos, $\left.\operatorname{pos}^{\prime}\right) \wedge \neg \operatorname{Safe}\left(\operatorname{pos}^{\prime}\right) \models \mathcal{T}_{S} \perp$
where \mathcal{T}_{S} is the extension of the (disjoint) combination $\mathbb{R} \cup \mathbb{Z}$ with two functions, pos, pos $^{\prime}: \mathbb{Z} \rightarrow \mathbb{R}$

Our idea: Use chains of "instantiation" + reduction.

Example

$$
\mathcal{T}_{0}=\mathbb{R} \cup \mathbb{Z}
$$

To show:

Example

To show:

$$
\mathcal{T}_{1}=\mathcal{T}_{0} \cup \text { Safe (pos) }
$$

$$
\mathcal{T}_{1} \cup G^{\prime}(\mathrm{pos}) \models \perp
$$

$$
\Downarrow
$$

$$
\mathcal{T}_{0}=\mathbb{R} \cup \mathbb{Z}
$$

$$
\mathcal{T}_{0} \cup G^{\prime \prime} \models \perp
$$

$$
\Phi\left(c, \bar{c}_{\mathrm{pos}^{\prime}}, \bar{d}_{\mathrm{pos}}, n, l_{\text {alarm }}, \min , \max , \Delta t\right) \models \perp
$$

Method 1: SAT checking/ Counterexample generation
Method 2: Quantifier elimination
relationships between parameters which guarantee safety

More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]

- Take into account also:
- Emergency messages
- Durations
- Specification language: CSP-OZ-DC
- Reduction to satisfiability in theories for which decision procedures exist
- Tool chain: [Faber, Ihlemann, Jacobs, VS]

CSP-OZ-DC \mapsto Transition constr. \mapsto Decision procedures (H-PILoT)

Example 2: Parametric topology

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Parametricity and modularity

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Approach:

- Decompose the system in trajectories (linear rail tracks; may overlap)
- Task 1: - Prove safety for trajectories with incoming/outgoing trains
- Conclude that for control rules in which trains have sufficient freedom (and if trains are assigned unique priorities) safety of all trajectories implies safety of the whole system
- Task 2: - General constraints on parameters which guarantee safety

Parametricity and modularity

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Data structures:
p_{1} : trains

- 2-sorted pointers
p_{2} : segments

- scalar fields $\left(f: p_{i} \rightarrow \mathbb{R}, g: p_{i} \rightarrow \mathbb{Z}\right)$
- updates efficient decision procedures (H-PiLoT)

Incoming and outgoing trains


```
Example 1: Speed Update
\(\operatorname{pos}(t)<\operatorname{length}(\operatorname{segm}(t))-d \rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \operatorname{lmax}(\operatorname{segm}(t))\)
\(\operatorname{pos}(t) \geq \operatorname{length}(\operatorname{segm}(t))-d \wedge \operatorname{alloc}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)=\operatorname{tid}(t)\)
    \(\rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \min \left(\operatorname{lmax}(\operatorname{segm}(t)), \operatorname{Imax}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)\right.\)
\(\operatorname{pos}(t) \geq\) length \((\operatorname{segm}(t))-d \wedge \operatorname{alloc}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right) \neq \operatorname{tid}(t)\)
    \(\rightarrow \operatorname{spd}^{\prime}(t)=\max (\operatorname{spd}(t)-\) decmax, 0\()\)
```


Incoming and outgoing trains

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm', spd', pos', train')
Assume: $s_{1} \neq$ null $_{s}, t_{1} \neq$ null $_{t}, \operatorname{train}(s) \neq t_{1}, \operatorname{alloc}\left(s_{1}\right)=\operatorname{idt}\left(t_{1}\right)$
$t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t))<\operatorname{ids}\left(s_{1}\right), \operatorname{next}_{t}(t)=\operatorname{null} t_{t}, \operatorname{alloc}\left(s_{1}\right)=\operatorname{tid}\left(t_{1}\right) \rightarrow \operatorname{next}^{\prime}(t)=t_{1} \wedge \operatorname{next}^{\prime}\left(t_{1}\right)=\operatorname{null}_{t}$ $t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t))<\operatorname{ids}\left(s_{1}\right), \operatorname{alloc}\left(s_{1}\right)=\operatorname{tid}\left(t_{1}\right), \operatorname{next}_{t}(t) \neq$ null $_{t}, \operatorname{ids}\left(\operatorname{segm}\left(\operatorname{next}_{t}(t)\right)\right) \leq \operatorname{ids}\left(s_{1}\right)$
$\rightarrow \operatorname{next}^{\prime}(t)=\operatorname{next}_{t}(t)$
$t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t)) \geq \operatorname{ids}\left(s_{1}\right) \rightarrow \operatorname{next}^{\prime}(t)=\operatorname{next}_{t}(t)$

Incoming and outgoing trains

Safety property

Safety property we want to prove: no two trains ever occupy the same track segment:

$$
(\text { Safe }):=\forall t_{1}, t_{2} \quad \operatorname{segm}\left(t_{1}\right)=\operatorname{segm}(t 2) \rightarrow t_{1}=t_{2}
$$

In order to prove that (Safe) is an invariant of the system, we need to find a suitable invariant $(\operatorname{lnv}(i))$ for every control location i of the TCS, and prove:

$$
(\operatorname{lnv}(i)) \models(\text { Safe }) \text { for all locations } i
$$

and that the invariants are preserved under all transitions of the system,

$$
(\operatorname{lnv}(i)) \wedge(\text { Update }) \models\left(\operatorname{Inv}^{\prime}(j)\right)
$$

whenever (Update) is a transition from location i to j .

Safety property

Need additional invariants.

- generate by hand [Faber, Ihlemann, Jacobs, VS, ongoing]
use the capabilities of H-PILoT of generating counterexamples
- generate automatically [work in progress]

Ground satisfiability problems for pointer data structures
the decision procedures presented before can be used without problems

Further extensions (Systems of LHA)

[Damm, Horbach, VS: FroCoS'15] Modularity results and small model property results for (decoupled) families of linear hybrid automata

Car platoon

Sensors + Communication Channels
Safety properties: $\forall i_{1}, \ldots, i_{k} \quad \phi_{\text {safe }}\left(i_{1}, \ldots, i_{l}\right)$
Collision free: $\forall i, j(\operatorname{lane}(i)=\operatorname{lane}(j) \wedge \operatorname{pos}(i) \geq \operatorname{pos}(j) \wedge i \neq j \rightarrow \operatorname{pos}(i)-\operatorname{pos}(j)>d)$

Model: Families of similar interacting system

Model families $\{S(i) \mid i \in I\}$ consisting of an unbounded number of similar interacting systems.

- Model the interaction
- Model the systems $S(i)$
- Model the topology updates

Model: Families of similar interacting systems

Model families $\{S(i) \mid i \in I\}$ consisting of an unbounded number of similar interacting systems.

- Model the interaction \mapsto structures $\left(I,\{p: I \rightarrow I\}_{p \in P}\right)$

$$
P=P_{S} \cup P_{N}
$$

The functions in P model the way the systems perceive their neighbors
P_{S} sensors:

P_{N} : neighborhood links

$\operatorname{sideback}(7)=3 \quad \operatorname{back}(7)=3$
$\operatorname{front}(7)=$ nil $\quad \operatorname{sidefront}(7)=10$

Model: Families of similar interacting systems

Model families $\{S(i) \mid i \in I\}$ consisting of an unbounded number of similar interacting systems.

- Model the interaction $\quad \mapsto \quad$ structures $\left(I,\{p: I \rightarrow I\}_{p \in P}\right)$
- Model the systems S(i)
$\mapsto \quad$ hybrid automata

Model: Spatial families of LHA

Model families $\{S(i) \mid i \in I\}$ consisting of an unbounded number of similar interacting systems.

- Model the interaction $\quad \mapsto \quad \operatorname{structures~}\left(I,\{p: I \rightarrow I\}_{p \in P}\right)$
- Model the systems $S(i) \quad \mapsto \quad$ hybrid automata
- Model the topology updates

```
\mapsto \quad \text { Topology automaton}
```

$$
\begin{aligned}
& \text { Example: Update(front, front }{ }^{\prime} \text {) } \\
& \forall i\left(i \neq \text { nil } \wedge \operatorname{Prop}(i) \wedge \neg \exists j(\operatorname{ASL}(j, i)) \rightarrow \text { front }^{\prime}(i)=\text { nil }\right) \\
& \forall i\left(i \neq \text { nil } \wedge \operatorname{Prop}(i) \wedge \quad \exists j(\operatorname{ASL}(j, i)) \rightarrow \operatorname{Closest}_{f}\left(\text { front }^{\prime}(i), i\right)\right) \\
& \forall i\left(i \neq \text { nil } \wedge \neg \operatorname{Prop}(i) \rightarrow \text { front }^{\prime}(i)=\text { front }(i)\right)
\end{aligned}
$$

$\operatorname{ASL}(j, i): \quad j \neq$ nil $\wedge \operatorname{lane}(j)=\operatorname{lane}(i) \wedge \operatorname{pos}(j)>\operatorname{pos}(i) \quad j$ is ahead of i on the same lane
$\operatorname{Closest}_{\mathrm{f}}(j, i): \quad \operatorname{ASL}(j, i) \wedge \forall k(\operatorname{ASL}(k, i) \rightarrow \operatorname{pos}(k) \geq \operatorname{pos}(j)) \quad j$ is ahead of i; no car between them.

Verification

Is safety property an inductive invariant?

Verification

Is safety property an inductive invariant?
Local extensions: use H-PILoT

- Unsatisfiable $\quad \mapsto \quad$ Safety invariant
- Satisfiable $\quad \mapsto \quad$ Model

Verification

Is safety property an inductive invariant?
Local extensions: use H-PILoT

- Unsatisfiable $\quad \mapsto \quad$ Safety invariant
- Satisfiable $\quad \mapsto \quad$ Model \mapsto Simulation [J. Wild, BSc Thesis 2018]

Other interesting topics

- Generate invariants
- Verification by abstraction/refinement

Abstraction-based Verification

Iocation unreachable location unreachable check feasibility \longrightarrow location reachable \Downarrow
conjunction of constraints: $\phi(1) \wedge \operatorname{Tr}(1,2) \wedge \cdots \wedge \operatorname{Tr}(n-1, n) \wedge \neg \operatorname{safe}(n)$

- satisfiable: feasible path
- unsatisfiable: refine abstract program s.t. the path is not feasible [McMillan 2003-2006] use 'local causes of inconsistency' \mapsto compute interpolants

Summary

- Decision procedures for various theories/theory combinations

Implemented in most of the existing SMT provers:
Z3: http://z3.codeplex.com/
CVC4: http://cvc4.cs.nyu.edu/web/
Yices: http://yices.csl.sri.com/

- Ideas about how to use them for verification

Decision procedures for other classes of theories/Applications"
Next semester: Seminar "Decision Procedures and Applications"
More details on Specification, Model Checking, Verification:
Every summer (usually end of August):
Summer school "Verification Technology, Systems \& Applications"
$\mathrm{BSc} / \mathrm{MSc}$ Theses in the area

