Decision Procedures in Verification

Decision Procedures (1)

12.12.2022

Viorica Sofronie-Stokkermans
e-mail: sofronie@uni-koblenz.de

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)
Semantics
Theories (Syntactic vs. Semantics view)
Herbrand models \mapsto The Bernays-Schönfinkel class
Algorithmic Problems
Decidability/Undecidability
Methods: Ordered Resolution with Selection
\mapsto Craig Interpolation
\mapsto redundancy
Decidable classes:
The Bernays-Schönfinkel class, the Ackermann class, the monadic class

3.2 Deduction problems

Satisfiability w.r.t. a theory

Satisfiability w.r.t. a theory

Example

Let $\Sigma=(\{e / 0, * / 2, i / 1\}, \emptyset)$
Let \mathcal{F} consist of all (universally quantified) group axioms:

$$
\begin{array}{rl}
\forall x, y, z & x *(y * z) \\
\forall x & x * i(x) \\
\forall x * y) * z \\
\forall x & x * e
\end{array}
$$

Question: Is $\forall x, y(x * y=y * x)$ entailed by \mathcal{F} ?

Satisfiability w.r.t. a theory

Example

Let $\Sigma=(\{e / 0, * / 2, i / 1\}, \emptyset)$
Let \mathcal{F} consist of all (universally quantified) group axioms:

$$
\begin{array}{rl}
\forall x, y, z & x *(y * z) \\
\forall x & x * i(x) \\
\forall x \in(x * y) * z \\
\forall x & x * e
\end{array}
$$

Question: Is $\forall x, y(x * y=y * x)$ entailed by \mathcal{F} ?
Alternative question:
Is $\forall x, y(x * y=y * x)$ true in the class of all groups?

Logical theories

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ-formulae.
the models of $\mathcal{F}: \quad \operatorname{Mod}(\mathcal{F})=\{\mathcal{A} \in \Sigma$-alg $\mid \mathcal{A} \vDash G$, for all G in $\mathcal{F}\}$

Semantic view

given a class \mathcal{M} of Σ-algebras
the first-order theory of $\mathcal{M}: \operatorname{Th}(\mathcal{M})=\left\{G \in F_{\Sigma}(X)\right.$ closed $\left.\mid \mathcal{M} \models G\right\}$

Decidable theories

Let $\Sigma=(\Omega, \Pi)$ be a signature.
\mathcal{M} : class of Σ-algebras. $\quad \mathcal{T}=\operatorname{Th}(\mathcal{M})$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.
\mathcal{F} : class of (closed) first-order formulae.
The theory $\mathcal{T}=\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (in finite time) whether $\mathcal{F} \models \phi$ or not.

Examples

Undecidable theories

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
- Peano arithmetic
-Th(Σ-alg)

Peano arithmetic

$$
\begin{array}{llr}
\text { Peano axioms: } & \forall x \neg(x+1 \approx 0) & \text { (zero) } \tag{zero}\\
& \forall x \forall y(x+1 \approx y+1 \rightarrow x \approx y & \text { (successor) } \\
& F[0] \wedge(\forall x(F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x]) & \text { (induction) } \\
& \forall x(x+0 \approx x) & \text { (plus zero) } \\
& \forall x, y(x+(y+1) \approx(x+y)+1) & \text { (plus successor) } \\
& \forall x, y(x * 0 \approx 0) & \text { (times 0) } \\
& \forall x, y(x *(y+1) \approx x * y+x) & \text { (times successor) } \\
3 * y+5>2 * y \text { expressed as } \exists z(z \neq 0 \wedge 3 * y+5 \approx 2 * y+z)
\end{array}
$$

Intended interpretation: $(\mathbb{N},\{0,1,+, *\},\{\approx, \leq\})$
(does not capture true arithmetic by Goedel's incompleteness theorem)

Examples

Undecidable theories

- Th $((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
- Peano arithmetic
-Th(Σ-alg)

Idea of undecidability proof: Suppose there is an algorithm P that, given a formula in one of the theories above decides whether that formula is valid.

We use P to give a decision algorithm for the language
$\{(G(M), w) \mid G(M)$ is the Gödelisation of a TM M that accepts the string $w\}$

As the latter problem is undecidable, this will show that P cannot exist.

Examples

Undecidable theories

- Th $((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
- Peano arithmetic
-Th(Σ-alg)
Idea of undecidability proof: (ctd)
(1) For $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$ and Peano arithmetic:
multiplication can be used for modeling Gödelisation
(2) For $\operatorname{Th}(\Sigma$-alg):

Given M and w, we create a FOL signature and a set of formulae over this signature encoding the way M functions, and a formula which is valid iff M accepts w.

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- Presburger arithmetic decidable in 3EXPTIME [Presburger'29]

Signature: $(\{0,1,+\},\{\approx, \leq\})($ no $*)$
Axioms \{ (zero), (successor), (induction), (plus zero), (plus successor) \}

- $\operatorname{Th}\left(\mathbb{Z}_{+}\right) \quad \mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+, \leq)$ the standard interpretation of integers.

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Problems

\mathcal{T} : first-order theory in signature $\Sigma ; \mathcal{L}$ class of (closed) Σ-formulae
Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?

Common restrictions on \mathcal{L}

$$
\text { Pred }=\emptyset \quad\{\phi \in \mathcal{L} \mid \mathcal{T} \models \phi\}
$$

$\mathcal{L}=\{\forall x A(x) \mid A$ atomic $\} \quad$ word problem
$\mathcal{L}=\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$ uniform word problem Th $_{\forall \text { Horn }}$
$\mathcal{L}=\{\forall x C(x) \mid C(x)$ clause $\} \quad$ clausal validity problem $\mathrm{Th}_{\forall, \mathrm{cl}}$
$\mathcal{L}=\{\forall x \phi(x) \mid \phi(x)$ unquantified $\} \quad$ universal validity problem Th_{\forall}
$\mathcal{L}=\left\{\exists x A_{1} \wedge \ldots \wedge A_{n} \mid A_{i}\right.$ atomic $\} \quad$ unification problem $\quad \mathrm{Th}_{\exists}$
$\mathcal{L}=\left\{\forall x \exists x A_{1} \wedge \ldots \wedge A_{n} \mid A_{i}\right.$ atomic $\} \quad$ unification with constants $\mathrm{Th}_{\forall \exists}$

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

\mathcal{T}-validity: Let \mathcal{T} be a first-order theory in signature Σ
Let \mathcal{L} be a class of (closed) Σ-formulae
Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable

Every \mathcal{T}-validity problem has a dual \mathcal{T}-satisfiability problem:
\mathcal{T}-satisfiability: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ-formulae

$$
\neg \mathcal{L}=\{\neg \phi \mid \phi \in \mathcal{L}\}
$$

Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg \mathcal{L}$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A$ atomic $\}$	$\{\exists x \neg A(x) \mid A$ atomic $\}$
$\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$	$\left\{\exists x\left(A_{1} \wedge \ldots \wedge A_{n} \wedge \neg B\right) \mid A_{i}, B\right.$ atomic $\}$
$\left\{\forall x \bigvee L_{i} \mid L_{i}\right.$ literals $\}$	$\left\{\exists x \wedge L_{i}^{\prime} \mid L_{i}^{\prime}\right.$ literals $\}$
$\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$	$\left\{\exists x \phi^{\prime}(x) \mid \phi^{\prime}(x)\right.$ unquantified $\}$

validity problem for universal formulae ground satisfiability problem

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg \mathcal{L}$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A$ atomic $\}$	$\{\exists x \neg A(x) \mid A$ atomic $\}$
$\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$	$\left\{\exists x\left(A_{1} \wedge \ldots \wedge A_{n} \wedge \neg B\right) \mid A_{i}, B\right.$ atomic $\}$
$\left\{\forall x \bigvee L_{i} \mid L_{i}\right.$ literals $\}$	$\left\{\exists x \wedge L_{i}^{\prime} \mid L_{i}^{\prime}\right.$ literals $\}$
$\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$	$\left\{\exists x \phi^{\prime}(x) \mid \phi^{\prime}(x)\right.$ unquantified $\}$

validity problem for universal formulae ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

$$
\begin{array}{lll}
\mathcal{T} \equiv \forall x A(x) & \text { iff } & \mathcal{T} \cup \exists x \neg A(x) \text { unsatisfiable } \\
\mathcal{T} \vDash \forall x\left(A_{1} \wedge \cdots \wedge A_{n} \rightarrow B\right) & \text { iff } & \mathcal{T} \cup \exists x\left(A_{1} \wedge \cdots \wedge A_{n} \wedge \neg B\right) \text { unsatisfiable } \\
\mathcal{T} \vDash \forall x\left(\bigvee_{i=1}^{n} A_{i} \vee \bigvee_{j=1}^{m} \neg B_{j}\right) & & \text { iff } \\
& & \mathcal{T} \cup \exists x\left(\neg A_{1} \wedge \cdots \wedge \neg A_{n} \wedge B_{1} \wedge \cdots \wedge B_{m}\right) \\
& & \text { unsatisfiable }
\end{array}
$$

\mathcal{T}-satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems
But be careful:

- in Constraint Solving one is interested if a formula is satisfiable in a given, fixed model of \mathcal{T}.
- in \mathcal{T}-satisfiability one is interested if a formula is satisfiable in any model of \mathcal{T} at all.

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification
(approximation: abstract from additional properties)

Application: Compiler Validation

Example: prove equivalence of source and target program
1: y := 1
2: if $z=x * x * x$
3: then $y:=x * x+y$
4: endif

1: y := 1
2: R1 := x*x
3: R2 := R1*x
4: jmpNE(z,R2,6)
5: y := R1+1

To prove: (indexes refer to values at line numbers)

$$
\begin{aligned}
& y_{1} \approx 1 \wedge\left[\left(z_{0} \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx x_{0} * x_{0}+y_{1}\right) \vee\left(z_{0} \not \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx y_{1}\right)\right] \wedge \\
& y_{1}^{\prime} \approx 1 \wedge R 1_{2} \approx x_{0}^{\prime} * x_{0}^{\prime} \wedge R 2_{3} \approx R 1_{2} * x_{0}^{\prime} \wedge \\
& \wedge \\
& \wedge\left[\left(z_{0}^{\prime} \approx R 2_{3} \wedge y_{5}^{\prime} \approx R 1_{2}+1\right) \vee\left(z_{0}^{\prime} \neq R 2_{3} \wedge y_{5}^{\prime} \approx y_{1}^{\prime}\right)\right] \wedge \\
& x_{0} \approx x_{0}^{\prime} \wedge y_{0} \approx y_{0}^{\prime} \wedge z_{0} \approx z_{0}^{\prime} \Longrightarrow \quad x_{0} \approx x_{0}^{\prime} \wedge y_{3} \approx y_{5}^{\prime} \wedge z_{0} \approx z_{0}^{\prime}
\end{aligned}
$$

Possibilities for checking it

(1) Abstraction.

Consider * to be a "free" function symbol (forget its properties).
Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of $*$.
(2) Reasoning about formulae in fragments of arithmetic.

Uninterpreted function symbols

Let $\Sigma=(\Omega, \Pi)$ be arbitrary
Let $\mathcal{M}=\Sigma$-alg be the class of all Σ-structures
The theory of uninterpreted function symbols is $\mathrm{Th}(\Sigma$-alg $)$ the family of all first-order formulae which are true in all Σ-algebras.
in general undecidable

Decidable fragment:

e.g. the class $\mathrm{Th}_{\forall}(\Sigma$-alg $)$ of all universal formulae which are true in all Σ-algebras.

Uninterpreted function symbols

Assume $\Pi=\emptyset$ (and \approx is the only predicate)

In this case we denote the theory of uninterpreted function symbols by $\operatorname{UIF}(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted Free(Σ)

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:
(1) testing validity of universal formulae w.r.t. UIF is decidable
(2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Proof: Follows from the fact that any universal formula is equivalent to a conjunction of (universally quantified) clauses.

