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Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Theories (Syntactic vs. Semantics view)

Herbrand models 7→ The Bernays-Schönfinkel class

Algorithmic Problems

Decidability/Undecidability

Methods: Ordered Resolution with Selection

7→ Craig Interpolation

7→ redundancy

Decidable classes:

The Bernays-Schönfinkel class, the Ackermann class, the monadic class
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3.2 Deduction problems

Satisfiability w.r.t. a theory
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Satisfiability w.r.t. a theory

Example

Let Σ = ({e/0, ∗/2, i/1}, ∅)

Let F consist of all (universally quantified) group axioms:

∀x , y , z x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z

∀x x ∗ i(x) ≈ e ∧ i(x) ∗ x ≈ e

∀x x ∗ e ≈ x ∧ e ∗ x ≈ x

Question: Is ∀x , y(x ∗ y = y ∗ x) entailed by F?
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Satisfiability w.r.t. a theory

Example

Let Σ = ({e/0, ∗/2, i/1}, ∅)

Let F consist of all (universally quantified) group axioms:

∀x , y , z x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z

∀x x ∗ i(x) ≈ e ∧ i(x) ∗ x ≈ e

∀x x ∗ e ≈ x ∧ e ∗ x ≈ x

Question: Is ∀x , y(x ∗ y = y ∗ x) entailed by F?

Alternative question:

Is ∀x , y(x ∗ y = y ∗ x) true in the class of all groups?
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Logical theories

Syntactic view

first-order theory: given by a set F of (closed) first-order Σ-formulae.

the models of F : Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view

given a class M of Σ-algebras

the first-order theory ofM: Th(M) = {G ∈ FΣ(X ) closed | M |= G}
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Decidable theories

Let Σ = (Ω,Π) be a signature.

M: class of Σ-algebras. T = Th(M) is decidable

iff

there is an algorithm which, for every closed first-order formula φ, can

decide (after a finite number of steps) whether φ is in T or not.

F : class of (closed) first-order formulae.

The theory T = Th(Mod(F)) is decidable

iff

there is an algorithm which, for every closed first-order formula φ, can

decide (in finite time) whether F |= φ or not.
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Examples

Undecidable theories

•Th((Z, {0, 1,+, ∗}, {≤}))

• Peano arithmetic

•Th(Σ-alg)
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Peano arithmetic

Peano axioms: ∀x ¬(x + 1 ≈ 0) (zero)

∀x∀y (x + 1 ≈ y + 1 → x ≈ y (successor)

F [0] ∧ (∀x (F [x] → F [x + 1]) → ∀xF [x]) (induction)

∀x (x + 0 ≈ x) (plus zero)

∀x , y (x + (y + 1) ≈ (x + y) + 1) (plus successor)

∀x , y (x ∗ 0 ≈ 0) (times 0)

∀x , y (x ∗ (y + 1) ≈ x ∗ y + x) (times successor)

3 ∗ y + 5 > 2 ∗ y expressed as ∃z(z 6= 0 ∧ 3 ∗ y + 5 ≈ 2 ∗ y + z)

Intended interpretation: (N, {0, 1,+, ∗}, {≈,≤})

(does not capture true arithmetic by Goedel’s incompleteness theorem)
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Examples

Undecidable theories

•Th((Z, {0, 1,+, ∗}, {≤}))

• Peano arithmetic

•Th(Σ-alg)

Idea of undecidability proof: Suppose there is an algorithm P that, given a

formula in one of the theories above decides whether that formula is valid.

We use P to give a decision algorithm for the language

{(G(M),w)|G(M) is the Gödelisation of a TM M that accepts the string w }

As the latter problem is undecidable, this will show that P cannot exist.
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Examples

Undecidable theories

•Th((Z, {0, 1,+, ∗}, {≤}))

• Peano arithmetic

•Th(Σ-alg)

Idea of undecidability proof: (ctd)

(1) For Th((Z, {0, 1,+, ∗}, {≤})) and Peano arithmetic:

multiplication can be used for modeling Gödelisation

(2) For Th(Σ-alg):

Given M and w , we create a FOL signature and a set of formulae over this

signature encoding the way M functions, and a formula which is valid iff M

accepts w .
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• Presburger arithmetic decidable in 3EXPTIME [Presburger’29]

Signature: ({0, 1,+}, {≈,≤}) (no ∗)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

• Th(Z+) Z+ = (Z, 0, s, +,≤) the standard interpretation of integers.
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication)

is decidable in 2EXPTIME [Tarski’30]
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments
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Problems

T : first-order theory in signature Σ; L class of (closed) Σ-formulae

Given φ in L, is it the case that T |= φ?

Common restrictions on L

Pred = ∅ {φ ∈ L | T |= φ}

L={∀xA(x) | A atomic} word problem

L={∀x(A1∧ . . .∧An→B) | Ai ,B atomic} uniform word problem Th∀Horn

L={∀xC(x) | C(x) clause} clausal validity problem Th∀,cl

L={∀xφ(x) | φ(x) unquantified} universal validity problem Th∀

L={∃xA1∧ . . .∧An | Ai atomic} unification problem Th∃

L={∀x∃xA1∧ . . .∧An | Ai atomic} unification with constants Th∀∃
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T -validity vs. T -satisfiability

T -validity: Let T be a first-order theory in signature Σ

Let L be a class of (closed) Σ-formulae

Given φ in L, is it the case that T |= φ?

Remark: T |= φ iff T ∪ ¬φ unsatisfiable

Every T -validity problem has a dual T -satisfiability problem:

T -satisfiability: Let T be a first-order theory in signature Σ

Let L be a class of (closed) Σ-formulae

¬L = {¬φ | φ ∈ L}

Given ψ in ¬L, is it the case that T ∪ ψ is satisfiable?
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T -validity vs. T -satisfiability

Common restrictions on L / ¬L

L ¬L

{∀xA(x) | A atomic} {∃x¬A(x) | A atomic}

{∀x(A1∧ . . .∧An→B) | Ai ,B atomic} {∃x(A1∧ . . .∧An∧¬B) | Ai ,B atomic}

{∀x
∨

Li | Li literals} {∃x
∧

L′
i
| L′

i
literals}

{∀xφ(x) | φ(x) unquantified} {∃xφ′(x) | φ′(x) unquantified}

validity problem for universal formulae ground satisfiability problem
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T -validity vs. T -satisfiability

Common restrictions on L / ¬L

L ¬L

{∀xA(x) | A atomic} {∃x¬A(x) | A atomic}

{∀x(A1∧ . . .∧An→B) | Ai ,B atomic} {∃x(A1∧ . . .∧An∧¬B) | Ai ,B atomic}

{∀x
∨

Li | Li literals} {∃x
∧

L′
i
| L′

i
literals}

{∀xφ(x) | φ(x) unquantified} {∃xφ′(x) | φ′(x) unquantified}

validity problem for universal formulae ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability

of conjunctions of ground literals
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T -validity vs. T -satisfiability

T |= ∀xA(x) iff T ∪ ∃x¬A(x) unsatisfiable

T |= ∀x(A1 ∧ · · · ∧ An → B) iff T ∪ ∃x(A1 ∧ · · · ∧ An ∧ ¬B) unsatisfiable

T |= ∀x(
∨n

i=1 Ai ∨
∨m

j=1 ¬Bj ) iff T ∪ ∃x(¬A1 ∧ · · · ∧ ¬An ∧ B1 ∧ · · · ∧ Bm)

unsatisfiable

T -satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems

But be careful:

• in Constraint Solving one is interested if a formula is

satisfiable in a given, fixed model of T .

• in T -satisfiability one is interested if a formula is

satisfiable in any model of T at all.
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3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning

- Applications to program verification

(approximation: abstract from additional properties)
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Application: Compiler Validation

Example: prove equivalence of source and target program

1: y := 1

2: if z = x*x*x

3: then y := x*x + y

4: endif

1: y := 1

2: R1 := x*x

3: R2 := R1*x

4: jmpNE(z,R2,6)

5: y := R1+1

To prove: (indexes refer to values at line numbers)

y1 ≈ 1 ∧ [(z0 ≈ x0 ∗ x0 ∗ x0 ∧ y3 ≈ x0 ∗ x0 + y1) ∨ (z0 6≈ x0 ∗ x0 ∗ x0 ∧ y3 ≈ y1)]∧

y ′

1 ≈ 1 ∧ R12 ≈ x′0 ∗ x′0 ∧ R23 ≈ R12 ∗ x′0∧

∧ [(z′0 ≈ R23 ∧ y ′

5 ≈ R12 + 1) ∨ (z′0 6= R23 ∧ y ′

5 ≈ y ′

1)]∧

x0 ≈ x′0 ∧ y0 ≈ y ′

0 ∧ z0 ≈ z′0 =⇒ x0 ≈ x′0 ∧ y3 ≈ y ′

5 ∧ z0 ≈ z′0

22



Possibilities for checking it

(1) Abstraction.

Consider ∗ to be a “free” function symbol (forget its properties).

Test it property can be proved in this approximation. If so,

then we know that implication holds also under the normal

interpretation of ∗.

(2) Reasoning about formulae in fragments of arithmetic.
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Uninterpreted function symbols

Let Σ = (Ω,Π) be arbitrary

Let M = Σ-alg be the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family

of all first-order formulae which are true in all Σ-algebras.

in general undecidable

Decidable fragment:

e.g. the class Th∀(Σ-alg) of all universal formulae which are true in

all Σ-algebras.
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Uninterpreted function symbols

Assume Π = ∅ (and ≈ is the only predicate)

In this case we denote the theory of uninterpreted function symbols

by UIF (Σ) (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and

denoted Free(Σ)
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Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

(1) testing validity of universal formulae w.r.t. UIF is decidable

(2) testing validity of (universally quantified) clauses w.r.t. UIF is

decidable

Proof: Follows from the fact that any universal formula is equivalent to a

conjunction of (universally quantified) clauses.
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