Decision Procedures in Verification

Decision Procedures (2)
19.12.2022

Viorica Sofronie-Stokkermans
e-mail: sofronie@uni-koblenz.de

Until now:

Logical theories
Satisfiability w.r.t. a theory / Validity w.r.t. a theory
Decidable theories / Undecidable theories
In order to obtain decidability results:

- Look at certain fragments

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- Presburger arithmetic decidable in 3EXPTIME [Presburger'29]

Signature: $(\{0,1,+\},\{\approx, \leq\})($ no $*)$
Axioms \{ (zero), (successor), (induction), (plus zero), (plus successor) \}

- $\operatorname{Th}\left(\mathbb{Z}_{+}\right) \quad \mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+, \leq)$ the standard interpretation of integers.

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Problems

\mathcal{T} : first-order theory in signature $\Sigma ; \mathcal{L}$ class of (closed) Σ-formulae
Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?

Common restrictions on \mathcal{L}

$$
\text { Pred }=\emptyset \quad\{\phi \in \mathcal{L} \mid \mathcal{T} \models \phi\}
$$

$\mathcal{L}=\{\forall x A(x) \mid A$ atomic $\} \quad$ word problem
$\mathcal{L}=\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$ uniform word problem Th $_{\forall \text { Horn }}$
$\mathcal{L}=\{\forall x C(x) \mid C(x)$ clause $\} \quad$ clausal validity problem $\mathrm{Th}_{\forall, \mathrm{cl}}$
$\mathcal{L}=\{\forall x \phi(x) \mid \phi(x)$ unquantified $\} \quad$ universal validity problem Th_{\forall}
$\mathcal{L}=\left\{\exists x A_{1} \wedge \ldots \wedge A_{n} \mid A_{i}\right.$ atomic $\} \quad$ unification problem $\quad \mathrm{Th}_{\exists}$
$\mathcal{L}=\left\{\forall x \exists x A_{1} \wedge \ldots \wedge A_{n} \mid A_{i}\right.$ atomic $\} \quad$ unification with constants $\mathrm{Th}_{\forall \exists}$

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

\mathcal{T}-validity: Let \mathcal{T} be a first-order theory in signature Σ
Let \mathcal{L} be a class of (closed) Σ-formulae
Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable

Every \mathcal{T}-validity problem has a dual \mathcal{T}-satisfiability problem:
\mathcal{T}-satisfiability: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ-formulae

$$
\neg \mathcal{L}=\{\neg \phi \mid \phi \in \mathcal{L}\}
$$

Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg \mathcal{L}$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A$ atomic $\}$	$\{\exists x \neg A(x) \mid A$ atomic $\}$
$\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$	$\left\{\exists x\left(A_{1} \wedge \ldots \wedge A_{n} \wedge \neg B\right) \mid A_{i}, B\right.$ atomic $\}$
$\left\{\forall x \bigvee L_{i} \mid L_{i}\right.$ literals $\}$	$\left\{\exists x \wedge L_{i}^{\prime} \mid L_{i}^{\prime}\right.$ literals $\}$
$\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$	$\left\{\exists x \phi^{\prime}(x) \mid \phi^{\prime}(x)\right.$ unquantified $\}$

validity problem for universal formulae ground satisfiability problem

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg \mathcal{L}$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A$ atomic $\}$	$\{\exists x \neg A(x) \mid A$ atomic $\}$
$\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$	$\left\{\exists x\left(A_{1} \wedge \ldots \wedge A_{n} \wedge \neg B\right) \mid A_{i}, B\right.$ atomic $\}$
$\left\{\forall x \bigvee L_{i} \mid L_{i}\right.$ literals $\}$	$\left\{\exists x \wedge L_{i}^{\prime} \mid L_{i}^{\prime}\right.$ literals $\}$
$\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$	$\left\{\exists x \phi^{\prime}(x) \mid \phi^{\prime}(x)\right.$ unquantified $\}$

validity problem for universal formulae ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

$$
\begin{array}{lll}
\mathcal{T} \equiv \forall x A(x) & \text { iff } & \mathcal{T} \cup \exists x \neg A(x) \text { unsatisfiable } \\
\mathcal{T} \vDash \forall x\left(A_{1} \wedge \cdots \wedge A_{n} \rightarrow B\right) & \text { iff } & \mathcal{T} \cup \exists x\left(A_{1} \wedge \cdots \wedge A_{n} \wedge \neg B\right) \text { unsatisfiable } \\
\mathcal{T} \vDash \forall x\left(\bigvee_{i=1}^{n} A_{i} \vee \bigvee_{j=1}^{m} \neg B_{j}\right) & & \text { iff } \\
& & \mathcal{T} \cup \exists x\left(\neg A_{1} \wedge \cdots \wedge \neg A_{n} \wedge B_{1} \wedge \cdots \wedge B_{m}\right) \\
& & \text { unsatisfiable }
\end{array}
$$

\mathcal{T}-satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems
But be careful:

- in Constraint Solving one is interested if a formula is satisfiable in a given, fixed model of \mathcal{T}.
- in \mathcal{T}-satisfiability one is interested if a formula is satisfiable in any model of \mathcal{T} at all.

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification
(approximation: abstract from additional properties)

Application: Compiler Validation

Example: prove equivalence of source and target program
1: y := 1
2: if $z=x * x * x$
3: then $y:=x * x+y$
4: endif

1: y := 1
2: R1 := x*x
3: R2 := R1*x
4: jmpNE(z,R2,6)
5: y := R1+1

To prove: (indexes refer to values at line numbers)

$$
\begin{aligned}
& y_{1} \approx 1 \wedge\left[\left(z_{0} \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx x_{0} * x_{0}+y_{1}\right) \vee\left(z_{0} \not \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx y_{1}\right)\right] \wedge \\
& y_{1}^{\prime} \approx 1 \wedge R 1_{2} \approx x_{0}^{\prime} * x_{0}^{\prime} \wedge R 2_{3} \approx R 1_{2} * x_{0}^{\prime} \wedge \\
& \wedge \\
& \wedge\left[\left(z_{0}^{\prime} \approx R 2_{3} \wedge y_{5}^{\prime} \approx R 1_{2}+1\right) \vee\left(z_{0}^{\prime} \neq R 2_{3} \wedge y_{5}^{\prime} \approx y_{1}^{\prime}\right)\right] \wedge \\
& x_{0} \approx x_{0}^{\prime} \wedge y_{0} \approx y_{0}^{\prime} \wedge z_{0} \approx z_{0}^{\prime} \Longrightarrow \quad x_{0} \approx x_{0}^{\prime} \wedge y_{3} \approx y_{5}^{\prime} \wedge z_{0} \approx z_{0}^{\prime}
\end{aligned}
$$

Possibilities for checking it

(1) Abstraction.

Consider * to be a "free" function symbol (forget its properties).
Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of $*$.
(2) Reasoning about formulae in fragments of arithmetic.

Uninterpreted function symbols

Let $\Sigma=(\Omega, \Pi)$ be arbitrary
Let $\mathcal{M}=\Sigma$-alg be the class of all Σ-structures
The theory of uninterpreted function symbols is $\operatorname{Th}(\Sigma$-alg $)$ the family of all first-order formulae which are true in all Σ-algebras.
in general undecidable
Decidable fragment: e.g. the class $\mathrm{Th}_{\forall}(\Sigma$-alg $)$ of all universal formulae which are true in all Σ-algebras.

Uninterpreted function symbols

Assume $\Pi=\emptyset$ (and \approx is the only predicate)

In this case we denote the theory of uninterpreted function symbols by $\operatorname{UIF}(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted Free(Σ)

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:
(1) testing validity of universal formulae w.r.t. UIF is decidable
(2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Proof: Follows from the fact that any universal formula is equivalent to a conjunction of (universally quantified) clauses.

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:
(1) testing validity of universal formulae w.r.t. UIF is decidable
(2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Goal:
Method for testing the validity of (universally quantified) clauses w.r.t. UIF

Solution 1

Task:
Check if UIF $\models \forall \bar{x}\left(s_{1}(\bar{x}) \approx t_{1}(\bar{x}) \wedge \cdots \wedge s_{k}(\bar{x}) \approx t_{k}(\bar{x}) \rightarrow \bigvee_{j=1}^{m} s_{j}^{\prime}(\bar{x}) \approx t_{j}^{\prime} t(\bar{x})\right)$

Solution 1:

The following are equivalent:
(1) $\left(\bigwedge_{i} s_{i} \approx t_{i}\right) \rightarrow \bigvee_{j} s_{j}^{\prime} \approx t_{j}^{\prime}$ is valid
(2) $E q(\sim) \wedge \operatorname{Con}(f) \wedge\left(\bigwedge_{i} s_{i} \sim t_{i}\right) \wedge\left(\bigwedge_{j} s_{j}^{\prime} \nsim t_{j}^{\prime}\right)$ is unsatisfiable.
where $E q(\sim): \operatorname{Refl}(\sim) \wedge \operatorname{Sim}(\sim) \wedge \operatorname{Trans}(\sim)$
$\operatorname{Con}(f): \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(\bigwedge x_{i} \sim y_{i} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)\right)$

Resolution: inferences between transitivity axioms - nontermination

Solution 2

Task:

Check if UIF $\models \forall \bar{x}\left(s_{1}(\bar{x}) \approx t_{1}(\bar{x}) \wedge \cdots \wedge s_{k}(\bar{x}) \approx t_{k}(\bar{x}) \rightarrow \bigvee_{j=1}^{m} s_{j}^{\prime}(\bar{x}) \approx t_{j}^{\prime}(\bar{x})\right)$
Solution 2: Ackermann's reduction.
Flatten the formula (replace, bottom-up, $f(c)$ with a new constant c_{f} $\phi \mapsto F L A T(\phi)$

Theorem 3.3.2: The following are equivalent:
(1) $\quad\left(\bigwedge_{i} s_{i}(\bar{c}) \approx t_{i}(\bar{c})\right) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c})$ is satisfiable
(2) $F C \wedge F L A T\left[\left(\bigwedge_{i} s_{i}(\bar{c}) \approx t_{i}(\bar{c})\right) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c})\right]$ is satisfiable where $F C=\left\{c_{1} \approx d_{1}, \ldots c_{n} \approx d_{n} \rightarrow c_{f} \approx d_{f} \mid\right.$ whenever $f\left(c_{1}, \ldots, c_{n}\right)$ was renamed to c_{f} $f\left(d_{1}, \ldots, d_{n}\right)$ was renamed to $\left.d_{f}\right\}$
Note: The problem is decidable in PTIME (see next pages)
Problem: Naive handling of transitivity/congruence axiom $\mapsto O\left(n^{3}\right)$
Goal: Give a faster algorithm

Example

The following are equivalent:
(1) $C:=f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a$ is satisfiable
(2) $F C \wedge F L A T[C]$ is satisfiable, where:
$\operatorname{FLAT}[f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a]$ is computed by introducing new constants renaming terms starting with f and then replacing in C the terms with the constants:

- $\operatorname{FLAT}[\underbrace{f(a, b)}_{a_{1}} \approx a \wedge f \underbrace{f(a, b)}_{a_{1}}, b) \not \underbrace{f(a, b]:=a_{1} \approx a \wedge a_{2} \not \approx a . ~}$

$$
\begin{aligned}
f(a, b) & =a_{1} \\
f\left(a_{1}, b\right) & =a_{2}
\end{aligned}
$$

- $F C:=\left(a \approx a_{1} \rightarrow a_{1} \approx a_{2}\right)^{a_{2}}$

Thus, the following are equivalent:
(1) $C:=f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a$ is satisfiable
(2) $\underbrace{\left(a \approx a_{1} \rightarrow a_{1} \approx a_{2}\right)}_{F C} \wedge \underbrace{a_{1} \approx a \wedge a_{2} \not \approx a}_{F L A T[C]}$ is satisfiable

Solution 3

Task:
Check if UIF $\models \forall \bar{x}\left(s_{1}(\bar{x}) \approx t_{1}(\bar{x}) \wedge \cdots \wedge s_{k}(\bar{x}) \approx t_{k}(\bar{x}) \rightarrow \bigvee_{j=1}^{m} s_{j}^{\prime}(\bar{x}) \approx t_{j}^{\prime}(\bar{x})\right)$
i.e. if $\left(s_{1}(\bar{c}) \approx t_{1}(\bar{c}) \wedge \cdots \wedge s_{k}(\bar{c}) \approx t_{k}(\bar{c}) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c})\right)$ unsatisfiable.

Solution 3

Task:
Check if $\left(s_{1}(\bar{c}) \approx t_{1}(\bar{c}) \wedge \cdots \wedge s_{k}(\bar{c}) \approx t_{k}(\bar{c}) \wedge \bigwedge_{k} s_{k}^{\prime}(\bar{c}) \not \approx t_{k}^{\prime}(\bar{c})\right)$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]
represent the terms occurring in the problem as DAG's

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$
\begin{array}{ll}
v_{1}: & f(f(a, b), b) \\
v_{2}: & f(a, b) \\
v_{3}: & a \\
v_{4}: & b
\end{array}
$$

Solution 3

Task: Check if $\left(s_{1}(\bar{c}) \approx t_{1}(\bar{c}) \wedge \cdots \wedge s_{k}(\bar{c}) \approx t_{k}(\bar{c}) \wedge s(\bar{c}) \not \approx t(\bar{c})\right)$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

- represent the terms occurring in the problem as DAG's
- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$
\begin{array}{ll}
v_{1}: & f(f(a, b), b) \\
v_{2}: & f(a, b) \\
v_{3}: & a \\
v_{4}: & b \\
R: & \left\{\left(v_{2}, v_{3}\right)\right\}
\end{array}
$$

- compute the "congruence closure" R^{c} of R
- check whether $\left(v_{1}, v_{3}\right) \in R^{c}$

Computing the congruence closure of a DAG

Example

- DAG structures:
- $G=(V, E)$ directed graph
- Labelling on vertices
$\lambda(v)$: label of vertex v
$\delta(v)$: outdegree of vertex v
- Edges leaving the vertex v are ordered ($v[i]$: denotes i-th successor of v)

$$
\begin{aligned}
& \lambda\left(v_{1}\right)=\lambda\left(v_{2}\right)=f \\
& \lambda\left(v_{3}\right)=a, \lambda\left(v_{4}\right)=b \\
& \delta\left(v_{1}\right)=\delta\left(v_{2}\right)=2 \\
& \delta\left(v_{3}\right)=\delta\left(v_{4}\right)=0 \\
& v_{1}[1]=v_{2}, v_{2}[2]=v_{4}
\end{aligned}
$$

Congruence closure of a DAG/Relation

Given: $\quad G=(V, E)$ DAG + labelling
$R \subseteq V \times V$
The congruence closure of R is the smallest relation R^{c} on V which contains R and is:

- reflexive
- symmetric
- transitive
- congruence:

If $\lambda(u)=\lambda(v)$ and $\delta(u)=\delta(v)$
and for all $1 \leq i \leq \delta(u):(u[i], v[i]) \in R^{c}$ then $(u, v) \in R^{c}$.

Congruence closure of a relation

Recursive definition

$$
\begin{aligned}
& \frac{(u, v) \in R}{(u, v) \in R^{c}} \\
& \frac{(v, v) \in R^{c}}{} \quad \frac{(u, v) \in R^{c}}{(v, u) \in R^{c}} \quad \frac{(u, v) \in R^{c} \quad(v, w) \in R^{c}}{(u, w) \in R^{c}} \\
& \frac{\lambda(u)=\lambda(v) \quad u, v \text { have } n \text { successors and }(u[i], v[i]) \in R^{c} \text { for all } 1 \leq i \leq n}{(u, v) \in R^{c}}
\end{aligned}
$$

- The congruence closure of R is the smallest set closed under these rules

Congruence closure and UIF

Assume that we have an algorithm \mathbb{A} for computing the congruence closure of a graph G and a set R of pairs of vertices

- Use \mathbb{A} for checking whether $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable.
(1) Construct graph corresponding to the terms occurring in $s_{i}, t_{i}, s_{j}^{\prime}, t_{j}^{\prime}$

Let v_{t} be the vertex corresponding to term t
(2) Let $R=\left\{\left(v_{s_{i}}, v_{t_{i}}\right) \mid i \in\{1, \ldots, n\}\right\}$
(3) Compute R^{c}.
(4) Output "Sat" if $\left(v_{s_{j}^{\prime}}, v_{t_{j}^{\prime}}\right) \notin R^{c}$ for all $1 \leq j \leq m$, otherwise "Unsat"

Theorem 3.3.3 (Correctness)
$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable iff $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.

Congruence closure and UIF

Theorem 3.3.3 (Correctness)
$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable iff $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.

Proof (\Rightarrow)

Assume \mathcal{A} is a \sum-structure such that $\mathcal{A} \models \bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$.

We can show that $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ implies that $\mathcal{A} \vDash s \approx t$ (Exercise).
(We use the fact that if $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ then there is a derivation for (v_{s}, v_{t}) $\in R^{c}$ in the calculus defined before; use induction on length of derivation to show that $\mathcal{A} \equiv s \approx t$.)

As $\mathcal{A} \models s_{j}^{\prime} \not \approx t_{j}^{\prime}$, it follows that $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable iff $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.
$\operatorname{Proof}(\Leftarrow)$ Assume that $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$. We construct a structure that satisfies $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$

- Universe is quotient of V w.r.t. R^{c} plus new element 0 .
- c constant $\mapsto c_{\mathcal{A}}=\left[v_{c}\right]_{R^{c}}$.
- $f / n \mapsto f_{\mathcal{A}}\left(\left[v_{1}\right]_{R^{c}}, \ldots,\left[v_{n}\right]_{R^{c}}\right)= \begin{cases}{\left[v_{f\left(t_{1}, \ldots, t_{n}\right)}\right]_{R^{c}}} & \text { if } v_{f\left(t_{1}, \ldots, t_{n}\right)} \in V, \\ & {\left[v_{t_{i}}\right]_{R^{c}}=\left[v_{i}\right]_{R^{c}} \text { for } 1 \leq i \leq n} \\ 0 & \text { otherwise }\end{cases}$ well-defined because R^{c} is a congruence.
- It holds that $\mathcal{A} \models s_{j}^{\prime} \not \approx t_{j}^{\prime}$ and $\mathcal{A} \models s_{i} \approx t_{i}$

Computing the congruence closure of a DAG

We will show how to algorithmically determine R^{c} next time.

