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Until now:

Logical theories

Satisfiability w.r.t. a theory / Validity w.r.t. a theory

Decidable theories / Undecidable theories

In order to obtain decidability results:

• Look at certain fragments
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• Presburger arithmetic decidable in 3EXPTIME [Presburger’29]

Signature: ({0, 1,+}, {≈,≤}) (no ∗)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

• Th(Z+) Z+ = (Z, 0, s, +,≤) the standard interpretation of integers.
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication)

is decidable in 2EXPTIME [Tarski’30]
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments
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Problems

T : first-order theory in signature Σ; L class of (closed) Σ-formulae

Given φ in L, is it the case that T |= φ?

Common restrictions on L

Pred = ∅ {φ ∈ L | T |= φ}

L={∀xA(x) | A atomic} word problem

L={∀x(A1∧ . . .∧An→B) | Ai ,B atomic} uniform word problem Th∀Horn

L={∀xC(x) | C(x) clause} clausal validity problem Th∀,cl

L={∀xφ(x) | φ(x) unquantified} universal validity problem Th∀

L={∃xA1∧ . . .∧An | Ai atomic} unification problem Th∃

L={∀x∃xA1∧ . . .∧An | Ai atomic} unification with constants Th∀∃
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T -validity vs. T -satisfiability

T -validity: Let T be a first-order theory in signature Σ

Let L be a class of (closed) Σ-formulae

Given φ in L, is it the case that T |= φ?

Remark: T |= φ iff T ∪ ¬φ unsatisfiable

Every T -validity problem has a dual T -satisfiability problem:

T -satisfiability: Let T be a first-order theory in signature Σ

Let L be a class of (closed) Σ-formulae

¬L = {¬φ | φ ∈ L}

Given ψ in ¬L, is it the case that T ∪ ψ is satisfiable?
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T -validity vs. T -satisfiability

Common restrictions on L / ¬L

L ¬L

{∀xA(x) | A atomic} {∃x¬A(x) | A atomic}

{∀x(A1∧ . . .∧An→B) | Ai ,B atomic} {∃x(A1∧ . . .∧An∧¬B) | Ai ,B atomic}

{∀x
∨

Li | Li literals} {∃x
∧

L′
i
| L′

i
literals}

{∀xφ(x) | φ(x) unquantified} {∃xφ′(x) | φ′(x) unquantified}

validity problem for universal formulae ground satisfiability problem
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T -validity vs. T -satisfiability

Common restrictions on L / ¬L

L ¬L

{∀xA(x) | A atomic} {∃x¬A(x) | A atomic}

{∀x(A1∧ . . .∧An→B) | Ai ,B atomic} {∃x(A1∧ . . .∧An∧¬B) | Ai ,B atomic}

{∀x
∨

Li | Li literals} {∃x
∧

L′
i
| L′

i
literals}

{∀xφ(x) | φ(x) unquantified} {∃xφ′(x) | φ′(x) unquantified}

validity problem for universal formulae ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability

of conjunctions of ground literals
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T -validity vs. T -satisfiability

T |= ∀xA(x) iff T ∪ ∃x¬A(x) unsatisfiable

T |= ∀x(A1 ∧ · · · ∧ An → B) iff T ∪ ∃x(A1 ∧ · · · ∧ An ∧ ¬B) unsatisfiable

T |= ∀x(
∨n

i=1 Ai ∨
∨m

j=1 ¬Bj ) iff T ∪ ∃x(¬A1 ∧ · · · ∧ ¬An ∧ B1 ∧ · · · ∧ Bm)

unsatisfiable

T -satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems

But be careful:

• in Constraint Solving one is interested if a formula is

satisfiable in a given, fixed model of T .

• in T -satisfiability one is interested if a formula is

satisfiable in any model of T at all.
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3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning

- Applications to program verification

(approximation: abstract from additional properties)
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Application: Compiler Validation

Example: prove equivalence of source and target program

1: y := 1

2: if z = x*x*x

3: then y := x*x + y

4: endif

1: y := 1

2: R1 := x*x

3: R2 := R1*x

4: jmpNE(z,R2,6)

5: y := R1+1

To prove: (indexes refer to values at line numbers)

y1 ≈ 1 ∧ [(z0 ≈ x0 ∗ x0 ∗ x0 ∧ y3 ≈ x0 ∗ x0 + y1) ∨ (z0 6≈ x0 ∗ x0 ∗ x0 ∧ y3 ≈ y1)]∧

y ′

1 ≈ 1 ∧ R12 ≈ x′0 ∗ x′0 ∧ R23 ≈ R12 ∗ x′0∧

∧ [(z′0 ≈ R23 ∧ y ′

5 ≈ R12 + 1) ∨ (z′0 6= R23 ∧ y ′

5 ≈ y ′

1)]∧

x0 ≈ x′0 ∧ y0 ≈ y ′

0 ∧ z0 ≈ z′0 =⇒ x0 ≈ x′0 ∧ y3 ≈ y ′

5 ∧ z0 ≈ z′0
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Possibilities for checking it

(1) Abstraction.

Consider ∗ to be a “free” function symbol (forget its properties).

Test it property can be proved in this approximation. If so,

then we know that implication holds also under the normal

interpretation of ∗.

(2) Reasoning about formulae in fragments of arithmetic.
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Uninterpreted function symbols

Let Σ = (Ω,Π) be arbitrary

Let M = Σ-alg be the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family of all

first-order formulae which are true in all Σ-algebras.

in general undecidable

Decidable fragment: e.g. the class Th∀(Σ-alg) of all universal formulae

which are true in all Σ-algebras.
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Uninterpreted function symbols

Assume Π = ∅ (and ≈ is the only predicate)

In this case we denote the theory of uninterpreted function symbols

by UIF (Σ) (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and

denoted Free(Σ)
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Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

(1) testing validity of universal formulae w.r.t. UIF is decidable

(2) testing validity of (universally quantified) clauses w.r.t. UIF is

decidable

Proof: Follows from the fact that any universal formula is equivalent to a

conjunction of (universally quantified) clauses.
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Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

(1) testing validity of universal formulae w.r.t. UIF is decidable

(2) testing validity of (universally quantified) clauses w.r.t. UIF is

decidable

Goal:

Method for testing the validity of (universally quantified) clauses w.r.t. UIF
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Solution 1

Task:

Check if UIF |= ∀x(s1(x)≈t1(x) ∧ · · · ∧ sk (x)≈tk (x) →
∨m

j=1 s
′

j
(x)≈t′

j
t(x))

Solution 1:

The following are equivalent:

(1) (
∧

i si ≈ ti ) →
∨

j s
′

j
≈ t′

j
is valid

(2) Eq(∼) ∧ Con(f ) ∧ (
∧

i si∼ti ) ∧ (
∧

j s
′

j
6∼ t′

j
) is unsatisfiable.

where Eq(∼) : Refl(∼) ∧ Sim(∼) ∧ Trans(∼)

Con(f ) : ∀x1, . . . , xn, y1, . . . , yn(
∧

xi∼yi→f (x1, . . . , xn) ∼ f (y1, . . . , yn))

Resolution: inferences between transitivity axioms – nontermination
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Solution 2

Task:

Check if UIF |= ∀x(s1(x)≈t1(x) ∧ · · · ∧ sk (x)≈tk (x) →
∨m

j=1 s
′

j (x)≈t′j (x))

Solution 2: Ackermann’s reduction.

Flatten the formula (replace, bottom-up, f (c) with a new constant cf
φ 7→ FLAT (φ)

Theorem 3.3.2: The following are equivalent:

(1) (
∧

i si (c) ≈ ti (c)) ∧
∧

j s
′

j
(c) 6≈ t′

j
(c) is satisfiable

(2) FC ∧ FLAT [(
∧

i si (c) ≈ ti (c)) ∧
∧

j s
′

j (c) 6≈ t′j (c)] is satisfiable

where FC = {c1≈d1, . . . cn≈dn → cf ≈df | whenever f (c1, . . . , cn) was renamed to cf

f (d1, . . . , dn) was renamed to df }

Note: The problem is decidable in PTIME (see next pages)

Problem: Naive handling of transitivity/congruence axiom 7→ O(n3)

Goal: Give a faster algorithm
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Example

The following are equivalent:

(1) C := f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a is satisfiable

(2) FC ∧ FLAT [C ] is satisfiable, where:

FLAT [f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a] is computed by introducing new constants

renaming terms starting with f and then replacing in C the terms with the constants:

• FLAT [f (a, b)
︸ ︷︷ ︸

a1

≈ a ∧ f (f (a, b)
︸ ︷︷ ︸

a1

, b)

︸ ︷︷ ︸

a2

6≈ a] := a1 ≈ a ∧ a2 6≈ a

f (a, b)=a1

f (a1, b)=a2

• FC := (a ≈ a1 → a1 ≈ a2)

Thus, the following are equivalent:

(1) C := f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a is satisfiable

(2) (a ≈ a1 → a1 ≈ a2)
︸ ︷︷ ︸

FC

∧ a1 ≈ a ∧ a2 6≈ a
︸ ︷︷ ︸

FLAT [C ]

is satisfiable
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Solution 3

Task:

Check if UIF |= ∀x(s1(x)≈t1(x) ∧ · · · ∧ sk (x)≈tk (x) →
∨m

j=1 s
′

j
(x)≈t′

j
(x))

i.e. if (s1(c)≈t1(c) ∧ · · · ∧ sk (c)≈tk (c) ∧
∧

j s
′

j (c)6≈t′j (c)) unsatisfiable.
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Solution 3

Task:

Check if (s1(c)≈t1(c) ∧ · · · ∧ sk (c)≈tk (c) ∧
∧

k s
′

k
(c)6≈t′

k
(c)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan’76; Nelson-Oppen’80]

represent the terms occurring in the problem as DAG’s

Example: Check whether f (f (a, b), b) ≈ a is a consequence of f (a, b) ≈ a.

2v
f

f

ba

v
1

3v 4v

v1 : f (f (a, b), b)
v2 : f (a, b)
v3 : a

v4 : b
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Solution 3

Task: Check if (s1(c)≈t1(c)∧ · · · ∧ sk (c)≈tk (c)∧ s(c)6≈t(c)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan’76; Nelson-Oppen’80]

- represent the terms occurring in the problem as DAG’s

- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether f (f (a, b), b) ≈ a is a consequence of f (a, b) ≈ a.

2v
f

f

ba

v
1

3v 4v

v1 : f (f (a, b), b)
v2 : f (a, b)
v3 : a

v4 : b

R : {(v2, v3)}

- compute the “congruence closure” Rc of R

- check whether (v1, v3) ∈ Rc
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Computing the congruence closure of a DAG

• DAG structures:

- G = (V ,E) directed graph

- Labelling on vertices

λ(v): label of vertex v

δ(v): outdegree of vertex v

- Edges leaving the vertex v are ordered

(v [i ]: denotes i-th successor of v)

Example

2v
f

f

ba

v
1

3v 4v

λ(v1) = λ(v2) = f

λ(v3) = a,λ(v4) = b

δ(v1) = δ(v2) = 2

δ(v3) = δ(v4) = 0

v1[1] = v2, v2[2] = v4

...
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Congruence closure of a DAG/Relation

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

The congruence closure of R is the smallest relation Rc on V which

contains R and is:

• reflexive

• symmetric

• transitive

• congruence:

If λ(u) = λ(v) and δ(u) = δ(v)

and for all 1 ≤ i ≤ δ(u): (u[i ], v [i ]) ∈ Rc

then (u, v) ∈ Rc . 2v

2v
f

ba3v 4v

f

v
1

f

ba3v 4v
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Congruence closure of a relation

Recursive definition

(u, v) ∈ R

(u, v) ∈ Rc

(v , v) ∈ Rc

(u, v) ∈ Rc

(v , u) ∈ Rc

(u, v) ∈ Rc (v ,w) ∈ Rc

(u,w) ∈ Rc

λ(u) = λ(v) u, v have n successors and (u[i ], v [i ]) ∈ Rc for all 1 ≤ i ≤ n

(u, v) ∈ Rc

• The congruence closure of R is the smallest set closed under these rules
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Congruence closure and UIF

Assume that we have an algorithm A for computing the congruence

closure of a graph G and a set R of pairs of vertices

• Use A for checking whether
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j
6≈ t′

j
is satisfiable.

(1) Construct graph corresponding to the terms occurring in si , ti , s
′

j , t
′

j

Let vt be the vertex corresponding to term t

(2) Let R = {(vsi , vti ) | i ∈ {1, . . . , n}}

(3) Compute Rc .

(4) Output “Sat” if (vs′
j
, vt′

j
) 6∈ Rc for all 1 ≤ j ≤ m, otherwise “Unsat”

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j
6≈t′

j
is satisfiable iff [vs′

j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.
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Congruence closure and UIF

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j 6≈t′j is satisfiable iff [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

Proof (⇒)

Assume A is a Σ-structure such that A |=
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j 6≈ t′j .

We can show that [vs ]Rc = [vt ]Rc implies that A |= s ≈ t (Exercise).

(We use the fact that if [vs ]Rc = [vt ]Rc then there is a derivation for

(vs , vt) ∈ Rc in the calculus defined before; use induction on length of

derivation to show that A |= s ≈ t.)

As A |= s′
j
6≈ t′

j
, it follows that [vs′

j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.
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Congruence closure and UIF

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j 6≈t′j is satisfiable iff [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

Proof(⇐) Assume that [vs′
j
]Rc 6= [vt′

j
]Rc for all 1 ≤ j ≤ m. We construct a

structure that satisfies
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j 6≈ t′j

• Universe is quotient of V w.r.t. Rc plus new element 0.

• c constant 7→ cA = [vc ]Rc .

• f /n 7→ fA([v1]Rc , . . . , [vn]Rc ) =















[vf (t1,...,tn)]Rc if vf (t1,...,tn) ∈ V ,

[vti ]Rc = [vi ]Rc for 1≤i≤n

0 otherwise

well-defined because Rc is a congruence.

• It holds that A |= s′j 6≈ t′j and A |= si ≈ ti
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Computing the congruence closure of a DAG

We will show how to algorithmically determine R
c next time.
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