Decision Procedures in Verification

Decision Procedures (3)
22.12.2022

Viorica Sofronie-Stokkermans
e-mail: sofronie@uni-koblenz.de

Solution 3

Task: Check if $\left(s_{1}(\bar{c}) \approx t_{1}(\bar{c}) \wedge \cdots \wedge s_{k}(\bar{c}) \approx t_{k}(\bar{c}) \wedge s(\bar{c}) \not \approx t(\bar{c})\right)$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

- represent the terms occurring in the problem as DAG's
- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$
\begin{array}{ll}
v_{1}: & f(f(a, b), b) \\
v_{2}: & f(a, b) \\
v_{3}: & a \\
v_{4}: & b \\
R: & \left\{\left(v_{2}, v_{3}\right)\right\}
\end{array}
$$

- compute the "congruence closure" R^{c} of R
- check whether $\left(v_{1}, v_{3}\right) \in R^{c}$

Congruence closure and UIF

Assume that we have an algorithm \mathbb{A} for computing the congruence closure of a graph G and a set R of pairs of vertices

- Use \mathbb{A} for checking whether $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable.
(1) Construct graph corresponding to the terms occurring in $s_{i}, t_{i}, s_{j}^{\prime}, t_{j}^{\prime}$

Let v_{t} be the vertex corresponding to term t
(2) Let $R=\left\{\left(v_{s_{i}}, v_{t_{i}}\right) \mid i \in\{1, \ldots, n\}\right\}$
(3) Compute R^{c}.
(4) Output "Sat" if $\left(v_{s_{j}^{\prime}}, v_{t_{j}^{\prime}}\right) \notin R^{c}$ for all $1 \leq j \leq m$, otherwise "Unsat"

Theorem 3.3.3 (Correctness)
$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable iff $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.

Computing the congruence closure of a DAG

Given: $G=(V, E)$ DAG + labelling

$$
R \subseteq V \times V
$$

Task: Compute R^{c} (the congruence closure of R)
Example:
$f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a$

$$
R=\left\{\left(v_{2}, v_{3}\right)\right\}
$$

Idea:

- Start with the identity relation $R^{c}=I d$
- Successively add new pairs of nodes to R^{c}; close relation under congruence.

Task: Compute R^{c}

Computing the congruence closure of a DAG

Given: $\quad G=(V, E)$ DAG + labelling

$$
R \subseteq V \times V ;\left(v, v^{\prime}\right) \in V^{2}
$$

Task: Check whether $\left(v, v^{\prime}\right) \in R^{c}$

Example:
$f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a$

$$
R=\left\{\left(v_{2}, v_{3}\right)\right\}
$$

Idea:

- Start with the identity relation $R^{c}=I d$
- Successively add new pairs of nodes to R^{c}; close relation under congruence.

Task: Decide whether $\left(v_{1}, v_{3}\right) \in R^{c}$

Computing the congruence closure of a DAG

Given: $\quad G=(V, E)$ DAG + labelling

$$
R \subseteq V \times V
$$

Task: Compute R^{c} (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_{i} (approximating R^{c}) by identifying congruent vertices u, v and computing $R_{i+1}:=$ congruence closure of $R_{i} \cup\{(u, v)\}$.

Representation:

- Congruence relation \mapsto corresponding partition

Computing the congruence closure of a DAG

Given: $\quad G=(V, E)$ DAG + labelling

$$
R \subseteq V \times V
$$

Task: Compute R^{c} (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_{i} (approximating R^{c}) by identifying congruent vertices u, v and computing $R_{i+1}:=$ congruence closure of $R_{i} \cup\{(u, v)\}$.

Representation:

- Congruence relation \mapsto corresponding partition
- Use procedures which operate on the partition: FIND (u) : unique name of equivalence class of u UNION (u, v) combines equivalence classes of u, v finds repr. t_{u}, t_{v} of equiv.cl. of u, v; sets $\operatorname{FIND}(u)$ to t_{v}

Computing the congruence closure of a DAG

$$
\begin{array}{l|l}
\operatorname{MERGE}(u, v) \\
\mathrm{g}
\end{array} \quad \begin{aligned}
& \text { Input: } \quad G=(V, E) \text { DAG + labelling } \\
& R \text { relation on } V \text { closed under congruence } \\
& u, v \in V \\
& \text { Output: the congruence closure of } R \cup\{(u, v)\}
\end{aligned}
$$

If $\operatorname{FIND}(u)=\operatorname{FIND}(v)$ [same canonical representative] then Return
If $\operatorname{FIND}(u) \neq \operatorname{FIND}(v)$ then [merge u, v; recursively-predecessors]
$P_{u}:=$ set of all predecessors of vertices w with $\operatorname{FIND}(w)=\operatorname{FIND}(u)$
$P_{v}:=$ set of all predecessors of vertices w with $\operatorname{FIND}(w)=\operatorname{FIND}(v)$
Call UNION (u, v) [merge congruence classes]
For all $(x, y) \in P_{u} \times P_{V}$ do: [merge congruent predecessors]
if $\operatorname{FIND}(x) \neq \operatorname{FIND}(y)$ and $\operatorname{CONGRUENT}(x, y)$ then $\operatorname{MERGE}(x, y)$

CONGRUENT (x, y)
if $\lambda(x) \neq \lambda(y)$ then Return FALSE
For $1 \leq i \leq \delta(x)$ if $\operatorname{FIND}(x[i]) \neq \operatorname{FIND}(y[i])$ then Return FALSE
Return TRUE.

Correctness

Proof:

(1) Returned equivalence relation is not too coarse

If x, y merged then $(x, y) \in(R \cup\{(u, v)\})^{c}$
(UNION only on initial pair and on congruent pairs)
(2) Returned equivalence relation is not too fine

If x, y vertices s.t. $(x, y) \in(R \cup\{(u, v)\})^{c}$ then they are merged by the algorithm. Induction of length of derivation of (x, y) from $(R \cup\{(u, v)\})^{c}$
(1) $(x, y) \in R$ OK (they are merged)
(2) $(x, y) \notin R$. The only non-trivial case is the following:

$$
\lambda(x)=\lambda(y), x, y \text { have } n \text { successors } x_{i}, y_{i} \text { where }
$$

$$
\left(x_{i}, y_{i}\right) \in(R \cup\{(u, v)\})^{c} \text { for all } 1 \leq i \leq n .
$$

Induction hypothesis: $\left(x_{i}, y_{i}\right)$ are merged at some point (become equal during some call of $\operatorname{UNION}(a, b)$, made in some $\operatorname{MERGE}(a, b)$) Successor of x equivalent to a (or b) before this call of UNION; same for y.
\Rightarrow MERGE must merge x and y

Computing the Congruence Closure

Let $G=(V, E)$ graph and $R \subseteq V \times V$
$C C(G, R)$ computes the R^{c} :
(1) $R_{0}:=\emptyset ; i:=1$
(2) while R contains "fresh" elements do:
pick "fresh" element $(u, v) \in R$
$R_{i}:=\operatorname{MERGE}(\mathrm{u}, \mathrm{v})$ for G and $R_{i-1} ; i:=i+1$.
Complexity: $O\left(n^{2}\right)$
Downey-Sethi-Tarjan congruence closure algorithm: more sophisticated version of MERGE (complexity $O(n \cdot \log n)$)

Reference: G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure. Journal of the ACM, 27(2):356-364, 1980.

Decision procedure for the QF theory of equality

Signature: Σ (function symbols)
Problem: Test satisfiability of the formula

$$
F=s_{1} \approx t_{1} \wedge \cdots \wedge s_{n} \approx t_{n} \wedge s_{1}^{\prime} \not \approx t_{1}^{\prime} \wedge \cdots \wedge s_{m}^{\prime} \not \approx t_{m}^{\prime}
$$

Solution: Let S_{F} be the set of all subterms occurring in F

1. Construct the DAG for $S_{F} ; R_{0}=I d$
2. [Build R_{n} the congruence closure of $\left\{\left(v\left(s_{1}\right), v\left(t_{1}\right)\right), \ldots,\left(v\left(s_{n}\right), v\left(t_{n}\right)\right)\right\}$]

For $i \in\{1, \ldots, n\}$ do $R_{i}:=\operatorname{MERGE}\left(v_{s_{i}}, v_{t_{i}}\right)$ w.r.t. R_{i-1}
3. If $\operatorname{FIND}\left(v_{s_{j}^{\prime}}\right)=\operatorname{FIND}\left(v_{t_{j}^{\prime}}\right)$ for some $j \in\{1, \ldots, m\}$ then return unsatisfiable
4. else $\left[\right.$ if $\operatorname{FIND}\left(v_{s_{j}^{\prime}}\right) \neq \operatorname{FIND}\left(v_{t_{j}^{\prime}}\right)$ for all $\left.j \in\{1, \ldots, m\}\right]$ then return satisfiable

Example

$$
f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a
$$

Test: unsatisfiability of

$$
f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a
$$

Task:

- Compute R^{c}
- Decide whether $\left(v_{1}, v_{3}\right) \in R^{c}$

Solution:

1. Construct DAG in the figure; $R_{0}=I d$.
2. Compute $R_{1}:=\operatorname{MERGE}\left(\left(v_{2}, v_{3}\right)\right.$
[Test representatives]

$$
\operatorname{FIND}\left(v_{2}\right)=v_{2} \neq v_{3}=\operatorname{FIND}\left(v_{3}\right)
$$

$$
P_{v_{2}}:=\left\{v_{1}\right\} ; P_{v_{3}}:=\left\{v_{2}\right\}
$$

[Merge congruence classes]
$\operatorname{UNION}\left(v_{2}, v_{3}\right)$: sets $\operatorname{FIND}\left(v_{2}\right)$ to v_{3}.
[Compute and recursively merge predecessors]
Test: $\operatorname{FIND}\left(v_{1}\right)=v_{1} \neq v_{3}=\operatorname{FIND}\left(v_{2}\right)$ $\operatorname{CONGR}\left(v_{1}, v_{2}\right)$
$\operatorname{MERGE}\left(v_{1}, v_{2}\right)$: (different representatives) calls UNION $\left(v_{1}, v_{2}\right)$ which sets $\operatorname{FIND}\left(v_{1}\right)$ to v_{3}.
3. Test whether $\operatorname{FIND}\left(v_{1}\right)=\operatorname{FIND}\left(v_{3}\right)$. Yes.

Return unsatisfiable.

3.4. Decision procedures for numeric domains

- Peano arithmetic
- Theory of real numbers
- Linear arithmetic
- over \mathbb{N} / \mathbb{Z}
- over \mathbb{R} / \mathbb{Q}

Decision procedures

- Light-weight fragments of linear arithmetic: Difference logic
- Full fragment $(L I(\mathbb{R})$ or $L I(\mathbb{Q})$

Peano arithmetic

$$
\begin{array}{lrr}
\text { Peano axioms: } & \forall x \neg(x+1 \approx 0) & \text { (zero) } \tag{zero}\\
& \forall x \forall y(x+1 \approx y+1 \rightarrow x \approx y & \text { (successor) } \\
& F[0] \wedge(\forall x(F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x]) & \text { (induction) } \\
& \forall x(x+0 \approx x) & \text { (plus zero) } \\
& \forall x, y(x+(y+1) \approx(x+y)+1) & \text { (plus successor) } \\
& \forall x, y(x * 0 \approx 0) & \text { (times 0) } \\
\forall x, y(x *(y+1) \approx x * y+x) & \text { (times successor) } \\
3 * y+5>2 * y \text { expressed as } \exists z(z \neq 0 \wedge 3 * y+5 \approx 2 * y+z)
\end{array}
$$

Intended interpretation: $(\mathbb{N},\{0,1,+, *\},\{<\})$ (also with \approx)
(does not capture true arithmetic by Goedel's incompleteness theorem)

Undecidable

Theory of integers

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{<\}))$

Undecidable

Theory of real numbers

Theory of real closed fields (real closed fields: fields with same properties as real numbers)

Axioms:

- the ordered field axioms;
- axiom asserting that every positive number has a square root; and
- an axiom scheme asserting that all polynomials of odd order have at least one real root.

Tarski (1951) proved that the theory of real closed fields, including the binary predicate symbols " $=$ ", " \neq ", and " $<$ ", and the operations of addition and multiplication, admits elimination of quantifiers, which implies that it is a complete and decidable theory.

Linear arithmetic

Syntax

- Signature $\Sigma=(\{0 / 0, s / 1,+/ 2\},\{</ 2\})$
- Terms, atomic formulae - as usual

Example: $3 * x_{1}+2 * x_{2} \leq 5 * x_{3}$ abbreviation for

$$
\left(x_{1}+x_{1}+x_{1}\right)+\left(x_{2}+x_{2}\right) \leq\left(x_{3}+x_{3}+x_{3}+x_{3}+x_{3}\right)
$$

Linear arithmetic

There are several ways to define linear arithmetic.
We need at least the following signature: $\Sigma=(\{0 / 0,1 / 0,+/ 2\},\{</ 2\})$ and the predefined binary predicate \approx.

Linear arithmetic

There are several ways to define linear arithmetic.
We need at least the following signature: $\Sigma=(\{0 / 0,1 / 0,+/ 2\},\{</ 2\})$ and the predefined binary predicate \approx.

Linear arithmetic over \mathbb{N} / \mathbb{Z}
$\operatorname{Th}\left(\mathbb{Z}_{+}\right) \quad \mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+,<)$ the standard interpretation of integers.
Axiomatization

Linear arithmetic over \mathbb{Q} / \mathbb{R}
$\operatorname{Th}(\mathbb{R}) \quad \mathbb{R}=(\mathbb{R},\{0,1,+\},\{<\})$ the standard interpretation of reals;
$\operatorname{Th}(\mathbb{Q}) \mathbb{Q}=(\mathbb{Q},\{0,1,+\},\{<\})$ the standard interpretation of rationals.
Axiomatization

Outline

We first present an efficient method for checking the satisfiability of formulae in a very simple fragment of linear arithmetic.

We will then give more details about possibilities of checking the satisfiability of arbitrary formulae in linear arithmetic.

Simple fragments of linear arithmetic

- Difference logic
check satisfiability of conjunctions of constraints of the form

$$
x-y \leq c
$$

- UTVPI (unit, two variables per inequality)
check satisfiability of conjunctions of constraints of the form

$$
a x+b y \leq c, \text { where } a, b \in\{-1,0,1\}
$$

Application: Program Verification

```
i := 1;
    [** where 1 <= n < m **]
while i < n
do
    i := i + 1;
    [** part of a program in which i is used as an index in an array
        which was declared to be of size s > m (and i is not changed)
    **]
od
```

Task: Check whether $i \leq s$ always during the execution of this program.

Application: Program Verification

```
i := 1; [** where 1 <= n < m **]
while i < n
do
    i := i + 1;
    [** part of a program in which i is used as an index in an array
        which was declared to be of size s > m (and i is not changed)
    **]
od
```

Task: Check whether $i \leq s$ always during the execution of this program.
Solution: Show that this is true at the beginning and remains true after every update of i.

Application: Program Verification

```
i := 1;
    [** where 1 <= n < m **]
while i < n
do
    i := i + 1;
    [** part of a program in which i is used as an index in an array
        which was declared to be of size s > m (and i is not changed)
    **]
od
```

Task: Check whether $i \leq s$ always during the execution of this program.
Solution: Show that $i \leq s$ is an invariant of the program:

1) It holds at the first line: $i=1 \rightarrow i \leq s$
2) It is preserved under the updates in the while loop:
$\forall n, m, s, i, i^{\prime} \quad\left(1 \leq n<m<s \wedge i<n \wedge i \leq s \wedge i^{\prime} \approx i+1 \rightarrow i^{\prime} \leq s\right)$

Positive difference logic

Syntax

The syntax of formulae in positive difference logic is defined as follows:

- Atomic formulae (also called difference constraints) are of the form:

$$
x-y \leq c
$$

where x, y are variables and c is a numerical constant.

- The set of formulae is:

$$
\begin{array}{rlrr}
F, G, H & ::= & A & \text { (atomic formula) } \\
& \mid & (F \wedge G) & \text { (conjunction) }
\end{array}
$$

Semantics:
Versions of difference logic exist, where the standard interpretation is \mathbb{Q} or resp. \mathbb{Z}.

Positive difference logic

A decision procedure for positive difference logic (\leq only)
Let S be a set (i.e. conjunction) of atoms in (positive) difference logic. $G(S)=(V, E, w)$, the inequality graph of S, is a weighted graph with:

- $V=X(S)$, the set of variables occurring in S
- $e=(x, y) \in E$ with $w(e)=c$ iff $x-y \leq c \in S$

Theorem 3.4.1.
Let S be a conjunction of difference constraints, and $G(S)$ the inequality graph of S. Then S is satisfiable iff there is no negative cycle in $G(S)$.

Searching for negative cycles in a graph can be done with the Bellman-Ford algorithm for finding the single-source shortest paths in a directed weighted graph in time $O(|V| \cdot|E|)$. (Side-effect of the algorithm exploited - if there exists a negative cycle in the graph then the algorithm finds it and aborts.)

Positive difference logic

Example - blackboard

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and $G(S)$ the inequality graph of S. Then S is satisfiable iff there is no negative cycle in $G(S)$.

Proof: next time.

