
Decision Procedures for Verification

Part 2. First-Order Logic (1)

14.11.2022

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Part 2: First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive

(e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

2

Overview

Today:

• Syntax and semantics (also for many-sorted first-order logic)

• Algorithmic problems, decidability, undecidability

Next lectures

• Logical theories (generalities)

• Normal forms

• Herbrand’s theorem (and a first decidable subclass of FOL)

• Horn clauses generalizations (local theories)

• Ordered Resolution with selection consequences

• Other decidable subclasses of FOL

3

2.1 Syntax

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols (domain-independent)

⇒ Boolean combinations, quantifiers

4

Signature

A signature

Σ = (Ω,Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0,

written f /n,

• Π is a set of predicate symbols p with arity m ≥ 0,

written p/m.

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

We use letters P , Q, R, S , to denote propositional variables.

5

Signature

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in

programming languages).

Most results established for one-sorted signatures extend in a

natural way to many-sorted signatures.

6

Many-sorted Signature

A many-sorted signature

Σ = (S , Ω, Π),

fixes an alphabet of non-logical symbols, where

• S is a set of sorts,

• Ω is a set of function symbols f with arity a(f) = s1 . . . sn → s,

• Π is a set of predicate symbols p with arity a(p) = s1 . . . sm

where s1, . . . , sn, sm, s are sorts.

7

Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.

8

Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.

Many-sorted case:

We assume that for every sort s ∈ S , Xs is a given countably infinite set of

symbols which we use for (the denotation of) variables of sort s.

9

Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

10

Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (t1, ..., tn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

Many-sorted case:

a variable x ∈ Xs is a term of sort s

if a(f) = s1 . . . sn → s, and ti are terms of sort si , i = 1, . . . , n then

f (t1, ..., tn) is a term of sort s.

11

Terms

In other words, terms are formal expressions with well-balanced brackets

which we may also view as marked, ordered trees.

The markings are function symbols or variables.

The nodes correspond to the subterms of the term.

A node v that is marked with a function symbol f of arity n has exactly n

subtrees representing the n immediate subterms of v .

12

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.

13

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.

Many-sorted case:

If a(p) = s1 . . . sm, we require that ti is a term of sort si for i = 1, . . . ,m.

14

Literals

L ::= A (positive literal)

| ¬A (negative literal)

15

Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)

16

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| ∀xF (universal quantification)

| ∃xF (existential quantification)

17

Notational Conventions

We omit brackets according to the following rules:

• ¬ >p ∧ >p ∨ >p → >p ↔

(binding precedences)

• ∨ and ∧ are associative and commutative

• → is right-associative

Qx1, . . . , xn F abbreviates Qx1 . . .Qxn F .

18

Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator

precedences.

Examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u), +(t, v))

−s for −(s)

0 for 0()

19

Conventions

In what follows we will use the following conventions:

constants (0-ary function symbols) are denoted with a, b, c, d , ...

function symbols with arity ≥ 1 are denoted

• f , g , h, ... if the formulae are interpreted into arbitrary algebras

• +,−, s, ... if the intended interpretation is into numerical domains

predicate symbols with arity 0 are denoted P,Q,R, S , ...

predicate symbols with arity ≥ 1 are denoted

• p, q, r , ... if the formulae are interpreted into arbitrary algebras

• ≤,≥,<,> if the intended interpretation is into numerical domains

variables are denoted x , y , z, ...

20

Example: Peano Arithmetic

Signature:

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

∀x , y(x ≤ y ↔ ∃z(x + z ≈ y))

∃x∀y(x + y ≈ y)

∀x , y(x ∗ s(y) ≈ x ∗ y + x)

∀x , y(s(x) ≈ s(y) → x ≈ y)

∀x∃y(x < y ∧ ¬∃z(x < z ∧ z < y))

21

Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can be

defined in first-order logic with equality just with the help of +. The

first formula defines ≤, while the second defines zero. The last formula,

respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below)

reintroduces the “redundant” symbols.

Consequently there is a trade-off between the complexity of the

quantification structure and the complexity of the signature.

22

Example: Specifying LISP lists

Signature:

ΣLists = (ΩLists, ΠLists)

ΩLists = {car/1, cdr/1, cons/2}

ΠLists = ∅

Examples of formulae:

∀x , y car(cons(x , y)) ≈ x

∀x , y cdr(cons(x , y)) ≈ y

∀x cons(car(x), cdr(x)) ≈ x

23

Many-sorted signatures

Example:

Signature

S = {array, index, element} set of sorts

Ω = {read, write}

a(read) = array × index → element

a(write) = array× index× element → array

Π = ∅

X = {Xs | s ∈ S}

Examples of formulae:

∀x : array ∀i : index ∀j : index (i ≈ j → write(x , i , read(x , j)) ≈ x)

∀x : array ∀y : array (x ≈ y ↔ ∀i : index (read(x , i) ≈ read(y , i)))

24

Bound and Free Variables

In QxF , Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx .

An occurrence of a variable x is called bound, if it is inside the scope of a

quantifier Qx .

Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential

forms.

Formulas without variables are called ground.

25

Bound and Free Variables

Example:

∀

scope
︷ ︸︸ ︷

y (∀

scope
︷ ︸︸ ︷

x p(x) → q(x , y))

The occurrence of y is bound, as is the first occurrence of x . The second

occurrence of x is a free occurrence.

26

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs

in all inference systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by

codom(σ).

27

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs

in all inference systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by

codom(σ).

Many-sorted case: Substitutions must be sort-preserving:

If x is a variable of sort s, then σ(x) must be a term of sort s.

28

Substitutions

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi pairwise

distinct, and then denote the mapping

[s1/x1, . . . , sn/xn](y) =

si , if y = xi

y , otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =

t, if y = x

σ(y), otherwise

29

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by

structural induction over the syntactic structure of t or F by the equations

depicted on the next page.

In the presence of quantification it is surprisingly complex:

We need to make sure that the (free) variables in the codomain of σ are not

captured upon placing them into the scope of a quantifier Qy , hence the

bound variable must be renamed into a “fresh”, that is, previously unused,

variable z.

30

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρGσ) ; for each binary connective ρ

(Qx F)σ = Qz (F [x 7→ z]σ) ; with z a fresh variable

31

2.2 Semantics

To give semantics to a logical system means to define a notion of truth for

the formulas. The concept of truth that we will now define for first-order

logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values

“true” and “false” denoted by 1 and 0, respectively.

32

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra and

its universe.

By Σ-Alg we denote the class of all Σ-algebras.

33

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra and

its universe.

By Σ-Alg we denote the class of all Σ-algebras.

A many-sorted Σ-algebra (also called Σ-interpretation or Σ-structure),

where Σ = (S , Ω, Π) is a triple

A=({Us}s∈S , (fA:Us1×. . .×Usn→Us) f∈Ω,
a(f)=s1...sn→s

(pA:Us1× . . .×Usm→{0, 1}) p∈Π
a(p)=s1...sm

)

where Us 6= ∅ is a set, called the universe of A of sort s.

34

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A),

is a map β : X → A.

Variable assignments are the semantic counterparts of substitutions.

35

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A),

is a map β : X → A.

Variable assignments are the semantic counterparts of substitutions.

Many-sorted case:

β = {βs}s∈S , βs : Xs → Us

36

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X) → A

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f /n ∈ Ω

37

Value of a Term in A with Respect to β

In the scope of a quantifier we need to evaluate terms with respect to

modified assignments. To that end, let β[x 7→ a] : X → A, for x ∈ X and

a ∈ A, denote the assignment

β[x 7→ a](y) :=

a if x = y

β(y) otherwise

38

Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(p(s1, . . . , sn)) = 1 ⇔ (A(β)(s1), . . . ,A(β)(sn)) ∈ pA

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F) = 1 ⇔ A(β)(F) = 0

A(β)(FρG) = Bρ(A(β)(F),A(β)(G))

with Bρ the Boolean function associated with ρ

A(β)(∀xF) = min
a∈U

{A(β[x 7→ a])(F)}

A(β)(∃xF) = max
a∈U

{A(β[x 7→ a])(F)}

39

Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n +m

∗N : (n,m) 7→ n ∗m

≤N = {(n,m) | n less than or equal to m}

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

40

Example

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(∀x , y(x + y ≈ y + x)) = 1

N(β)(∀z z ≤ y) = 0

N(β)(∀x∃y x < y) = 1

41

2.3 Models, Validity, and Satisfiability

F is valid in A under assignment β:

A,β |= F :⇔ A(β)(F) = 1

F is valid in A (A is a model of F):

A |= F :⇔ A,β |= F , for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A,β |= F .

Otherwise F is called unsatisfiable.

42

Substitution Lemma

The following propositions, to be proved by structural induction, hold for

all Σ-algebras A, assignments β, and substitutions σ.

Lemma 2.3:

For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → A is the assignment β ◦ σ(x) = A(β)(xσ).

Proposition 2.4:

For any Σ-formula F , A(β)(Fσ) = A(β ◦ σ)(F).

43

Substitution Lemma

Corollary 2.5:

A, β |= Fσ ⇔ A, β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution

corresponds to the semantic concept of an assignment.

44

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G

:⇔ for all A ∈ Σ-alg and β ∈ X → UA,

whenever A,β |= F then A,β |= G .

F and G are called equivalent

:⇔ for all A ∈ Σ-alg und β ∈ X → UA we have

A,β |= F ⇔ A,β |= G .

45

Entailment and Equivalence

Proposition 2.6:

F entails G iff (F → G) is valid

Proposition 2.7:

F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N |= F

:⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A,β |= G , for all G ∈ N, then A,β |= F .

46

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained

by the following proposition.

Proposition 2.8:

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient

to design a checker for unsatisfiability.

Q: In a similar way, entailment N |= F can be reduced to unsatisfiability.

How?

47

