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Until now

• Ordered resolution with selection

• Redundancy
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Some theorem provers for first-order logic

• SPASS http://www.spass-prover.org/

• E http://www4.informatik.tu-muenchen.de/∼schulz/E/E.html

• Vampire http://www.vprover.org/
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Decidable subclasses of first-order logic
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Applications

Use ordered resolution with selection to give a decision procedure

for the Ackermann class.
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The Ackermann class

Σ = (Ω,Π), Ω is a finite set of constants

The Ackermann class consists of all sentences of the form

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

Idea: CNF translation:

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

⇒S ∀xF (c1, . . . , cn, x , f1(x), . . . , fm(x))

⇒K ∀x
∧∨

Li (c1, . . . , cn, x , f1(x), . . . , fm(x))

c1, . . . , cn are Skolem constants

f1, . . . , fm are unary Skolem functions

6



The Ackermann class

Σ = (Ω,Π), Ω is a finite set of constants

The Ackermann class consists of all sentences of the form

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

Idea: CNF translation:

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

⇒∗ ∀x
∧∨

Li (c1, . . . , cn, x , f1(x), . . . , fm(x))

The clauses are in the following classes:

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, f1, . . . , fn) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols
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The Ackermann class

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, f1, . . . , fn) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols

Term ordering

f (t) ≻ t; terms containing function symbols larger than those who do not.

B ≻ A iff exists argument u of B such that every argument t of A: u ≻ t

Ordered resolution: G ∪ V ∪ Gf ∪ Vf is closed under ordered resolution.

G ,G 7→ G ; G ,V 7→ G ; G ,Gf 7→ nothing; G ,Vf 7→ nothing

V ,V 7→ V ∪ G ; V ,Gf 7→ G ∪ Gf ; V ,Vf 7→ G ∪ V ∪ Gf ∪ Vf

Gf ,Gf 7→ Gf ; Gf ,Vf 7→ Gf ∪ G ; Vf ,Vf 7→ G ∪ V ∪ Vf ∪ Gf

Observation 1: G ∪ V ∪ Gf ∪ Vf finite set of clauses (up to renaming of

variables).
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The Ackermann class

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, fi ) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols

Term ordering

f (t) ≻ t; terms containing function symbols larger than those who do not.

B ≻ A iff exists argument u of B such that every argument t of A: u ≻ t

Ordered resolution: G ∪ V ∪ Gf ∪ Vf is closed under ordered resolution.

G ,G 7→ G ; G ,V 7→ G ; G ,Gf 7→ nothing; G ,Vf 7→ nothing

V ,V 7→ V ∪ G ; V ,Gf 7→ G ∪ Gf ; V ,Vf 7→ G ∪ V ∪ Gf ∪ Vf

Gf ,Gf 7→ Gf ; Gf ,Vf 7→ Gf ∪ G ; Vf ,Vf 7→ G ∪ V ∪ Vf ∪ Gf

Observation 2: No clauses with nested function symbols can be generated.
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The Ackermann Class

Conclusion:

Resolution (with implicit factorization) will always terminate if the input

clauses are in the class defined before.

Resolution can be used as a decision procedure to check the satisfiability of

formulae in the Ackermann class.
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The Monadic Class

Monadic first-order logic (MFO) is FOL (without equality) over purely

relational signatures Σ = (Ω,Π), where Ω = ∅, and every p ∈ Π has arity 1.

Abstract syntax:

Φ := ⊤ | P(x) | Φ1 ∧ Φ2 | ¬Φ | Φ1 ∨ Φ2 | ∀xΦ | ∃xΦ

Idea. Let Φ be a MFO formula with k predicate symbols.

Let A = (UA, {pA}p∈Π) be a Σ-algebra. The only way to distinguish the

elements of UA is by the atomic formulae p(x), p ∈ Π.

• the elements which a ∈ UA which belong to the same pA’s, p ∈ Π

can be collapsed into one single element.

• if Π = {p1, . . . , pk} then what remains is a finite structure with at

most 2k elements.

• the truth value of a formula: computed by evaluating all subformulae.
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The Monadic Class

MFO Abstract syntax: Φ := ⊤ | P(x) | Φ1 ∧Φ2 | ¬Φ | Φ1 ∨Φ2 | ∀xΦ | ∃xΦ

Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO

formula with k predicate symbols then Φ has a model where the domain is

a subset of {0, 1}k .

Proof: Let B = ({0, 1}k , {p1
B
, . . . , pk

B
}), where pi

B
={(b1, . . . , bk ) | bi=1}.

Let A = (UA, {p1
A
, . . . , pk

A
}), β : X → UA be such that (A,β) |= Φ.

We construct a model for Φ with cardinality at most 2k as follows:

• Let h : A → B be defined for all a ∈ UA by:

h(a) = (b1, . . . , bk ) where bi = 1 if a ∈ p
i
A

and 0 otherwise.

Then a ∈ pi
A

iff h(a) ∈ pi
B

for all a ∈ UA and all i = 1, . . . , k.

• Let B′ = ({0, 1}k ∩ h(UA), {p1
B
∩ h(UA), . . . , pk

B
∩ h(UA)}).

• We show that (B′, β ◦ h) |= Φ.
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The Monadic Class

Let B = ({0, 1}k , {p1
B
, . . . , pk

B
}), where pi

B
={(b1, . . . , bk ) | bi=1}.

Let A = (UA, {p1
A
, . . . , pk

A
}), β : X → UA be such that (A,β) |= Φ.

We construct a model for Φ with cardinality at most 2k as follows:

• Let h : A → B be defined for all a ∈ UA by:

h(a) = (b1, . . . , bk ) where bi = 1 if a ∈ p
i
A

and 0 otherwise.

Then a ∈ pi
A

iff h(a) ∈ pi
B

for all a ∈ UA and all i = 1, . . . , k.

• Let B′ = ({0, 1}k ∩ h(UA), {p1
B
∩ h(UA), . . . , pk

B
∩ h(UA)}).

• We show that (B′, β ◦ h) |= Φ.

Induction on the structure of Φ

• Φ = ⊤ OK

• Φ = pi (x). Then (A,β) |= Φ iff β(x) ∈ pi
A

iff h(β(x)) ∈ pi
B

iff

(B′, β ◦ h) |= Φ.
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The Monadic Class

Let B = ({0, 1}k , {p1
B
, . . . , pk

B
}), where pi

B
={(b1, . . . , bk ) | bi=1}.

Let A = (UA, {p1
A
, . . . , pk

A
}), β : X → UA be such that (A,β) |= Φ.

We construct a model for Φ with cardinality at most 2k as follows:

• Let h : A → B be defined for all a ∈ UA by:

h(a) = (b1, . . . , bk ) where bi = 1 if a ∈ p
i
A

and 0 otherwise.

Then a ∈ pi
A

iff h(a) ∈ pi
B

for all a ∈ UA and all i = 1, . . . , k.

• Let B′ = ({0, 1}k ∩ h(UA), {p1
B
∩ h(UA), . . . , pk

B
∩ h(UA)}).

• We show that (B′, β ◦ h) |= Φ.

Induction on the structure of Φ

• Φ = Φ1 ∧ Φ2: standard

• Φ = ¬Φ1: standard
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The Monadic Class

Let B = ({0, 1}k , {p1
B
, . . . , pk

B
}), where pi

B
={(b1, . . . , bk ) | bi=1}.

Let A = (UA, {p1
A
, . . . , pk

A
}), β : X → UA be such that (A,β) |= Φ.

We construct a model for Φ with cardinality at most 2k as follows:

• Let h : A → B be defined for all a ∈ UA by:

h(a) = (b1, . . . , bk ) where bi = 1 if a ∈ p
i
A

and 0 otherwise.

Then a ∈ pi
A

iff h(a) ∈ pi
B

for all a ∈ UA and all i = 1, . . . , k.

• Let B′ = ({0, 1}k ∩ h(UA), {p1
B
∩ h(UA), . . . , pk

B
∩ h(UA)}).

• We show that (B′, β ◦ h) |= Φ.

Induction on the structure of Φ

• Φ = ∀xΦ1(x). Then the following are equivalent:

– (A,β)|=Φ (i.e. (A,β[x 7→ a])|=Φ1 for all a ∈ UA)

– (B′, β[x 7→ a] ◦ h)|=Φ1 for all a∈UA (ind. hyp)

– (B′, β ◦ h[x 7→ b])|=Φ1 for all b∈{0, 1}k ∩ h(A) (i.e. (B′, β◦h)|=Φ)
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The Monadic Class

Resolution-based decision procedure for the Monadic Class (and for several

other classes):

William H. Joyner Jr.

Resolution Strategies as Decision Procedures.

J. ACM 23(3): 398-417 (1976)

Idea:

• Use orderings to restrict the possible inferences

• Identify a class of clauses (with terms of bounded depth) which

contains the type of clauses generated from the respective fragment

and is closed under ordered resolution (+ red. elim. criteria)

• Show that a saturation of the clauses can be obtained in finite time
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The Monadic Class

Resolution-based decision procedure for the Monadic Class:

Φ : ∀x1∃y1 . . . ∀xk∃yk (....p
s(xi )......p

l (yi )...)

7→ ∀x1 . . . ∀xk (...p
s(xi )...p

l (fsk(x1, . . . , x i )...)

Consider the class MON of clauses with the following properties:

- no literal of heigth greater than 2 appears

- each variable-disjoint partition has at most n =
∑

i=1 |x i |

variables (can order the variables as x1, . . . , xn)

- the variables of each non-ground block can occur either in

atoms p(xi ) or in atoms P(fsk(x1, . . . , xt)), 0 ≤ t ≤ n

It can be shown that this class contains all CNF’s of formulae in the

monadic class and is closed under ordered resolution.
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