Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

Mai 16, 2012

Exercises for "Formal Specification and Verification" Exercise sheet 3

Exercise 3.1:

Let $\Sigma = (\Omega, \Pi)$ be a signature, where $\Omega = \{f/2, g/1, a/0, b/0\}$ and $\Pi = \{p/2\}$; let X be the set of variables $\{x, y, z\}$. Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae, which are neither?

(a)
$$\neg p(g(a), f(x, y))$$

(b)
$$f(x,x) \approx x$$

(c)
$$p(f(x,a),x) \vee p(a,b)$$

- (d) $p(\neg g(x), g(y))$
- (e) $\neg p(f(x,y))$
- (f) $p(a,b) \wedge p(x,y) \wedge y$

(g)
$$\exists y(\neg p(f(y,y),y))$$

(h) $\forall x \forall y (g(p(x,y)) \approx g(x))$

Exercise 3.2:

Compute the results of the following substitutions:

(a) f(g(x), x)[g(a)/x](b) p(f(y, x), g(x))[x/y](c) $\forall y(p(f(y, x), g(y)))[x/y]$ (d) $\forall y(p(f(y, x), x))[y/x]$ (e) $\forall y(p(f(z, g(y)), g(x)) \lor \exists z(g(z) \approx y))[g(b)/z]$ (f) $\exists y(f(x, y) \approx x \rightarrow \forall x(f(x, y) \approx x))[g(y)/y, g(z)/x]$

Exercise 3.3:

Prove or refute the following statements:

- (a) If F is a first-order formula, then F is valid if and only if $F \to \bot$ is unsatisfiable.
- (b) If F and G are first-order formulae, F is valid, and $F \to G$ is valid, then G is valid.

- (c) If F and G are first-order formulae, F is satisfiable, and $F \to G$ is satisfiable, then G is satisfiable.
- (d) If F is a first-order formula and x a variable, then F is unsatisfiable if and only if $\exists xF$ is unsatisfiable.
- (e) If F and G are first-order formulae and x is a variable then $\forall x(F \land G) \models \forall xF \land \forall xG$ and $\forall xF \land \forall xG \models \forall x(F \land G)$.
- (f) If F and G are first-order formulae and x is a variable then $\exists x(F \land G) \models \exists xF \land \exists xG$ and $\exists xF \land \exists xG \models \exists x(F \land G)$.

Exercise 3.4:

Let $\Sigma = (\Omega, \Pi)$, where $\Omega = \{0/0, s/1, +/2\}$ and $\Pi = \emptyset$ (i.e. the only predicate symbol is \approx). Consider the following formulae in the signature Σ :

- 1. $F_1 = \forall x \ (x + 0 \approx x)$
- 2. $F_2 = \forall x, y \ (x + s(y) \approx s(x + y))$
- 3. $F_3 = \forall x, y \ (x + y \approx y + x).$

Find a Σ -structure in which F_1 and F_2 are valid but F_3 is not.

Please submit your solution until Wednesday, May 23, 2012 at 11:00.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework FSW" in the subject.
- Hand it in to me (Room B225) or drop it in the box in front of Room B224.