
Formal Specification and Verification

8.05.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Mathematical foundations

Formal logic:

• Syntax: a formal language (formula expressing facts)

• Semantics: to define the meaning of the language, that is which facts

are valid)

• Deductive system: made of axioms and inference rules to formaly

derive theorems, that is facts that are provable

2

Last time

Propositional classical logic

• Syntax

• Semantics

Models, Validity, and Satisfiability

Entailment and Equivalence

• Checking Unsatisfiability

Truth tables

”Rewriting” using equivalences

Proof systems: clausal/non-clausal

- non-clausal: Hilbert calculus

3

Today

Propositional classical logic

Proof systems: clausal/non-clausal

- non-clausal: Hilbert calculus

sequent calculus

- clausal: Resolution; DPLL (translation to CNF needed)

- Binary Decision Diagrams On Thursday, 10.05

4

Last time

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . ,Fn, Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises
z }| {

F1 . . . Fn

Fn+1
|{z}

conclusion

.

Clausal inference system: premises and conclusions are clauses. One

also considers inference systems over other data structures.

5

Proofs

A proof in Γ of a formula F from a a set of formulas N (called

assumptions) is a sequence F1, . . . ,Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N, or else there exists an inference

(Fi1 , . . . , Fini
, Fi) in Γ, such that 0 ≤ ij < i , for 1 ≤ j ≤ ni .

6

Proofs

Provability ⊢Γ of F from N in Γ:

N ⊢Γ F :⇔ there exists a proof Γ of F from N.

Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . , Fn |= F

Γ is called complete :⇔

N |= F ⇒ N ⊢Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N ⊢Γ ⊥

7

A deductive system for Propositional logic

Variant of the system of Hilbert-Ackermann

(Signature: ∨,¬; x → y ≡Def ¬x ∨ y)

Axiom Schemata (to be instantiated for all possible formulae)

(1) (p ∨ p) → p

(2) p → (q ∨ p)

(3) (p ∨ q) → (q ∨ p)

(4) (p → q) → (r ∨ p → r ∨ q)

Inference rules

Modus Ponens:
p, p→q

q

8

Example of proof

Prove φ ∨ ¬φ

1. ((φ ∨ φ) → φ) → (¬φ ∨ (φ ∨ φ) → ¬φ ∨ φ) [Instance of (4)]

2. φ ∨ φ → φ [Instance of (1)]

3. ¬φ ∨ (φ ∨ φ) → (¬φ ∨ φ) [1., 2., and MP]

3’. = (φ → (φ ∨ φ)) → (¬φ ∨ φ) [3 and definition of →]

4. φ → φ ∨ φ [Instance of (2)]

5. ¬φ ∨ φ [3., 4. and MP]

6. (¬φ ∨ φ) → (φ ∨ ¬φ) [Instance of (3)]

7. φ ∨ ¬φ) [5., 6. and MP]

9

Soundness and completeness

Theorem. The Hilbert deductive system is sound.

Theorem. The Hilbert deductive system is complete.

10

Sequent calculus for propositional logic

Sequent Calculus based on notion of sequent

ψ1, . . . ,ψm
| {z }

Antecedent

⇒ φ1, . . . ,φn
| {z }

Succedent

Has same semantics as

|= ψ1 ∧ · · · ∧ ψm → (φ1 ∨ · · · ∨ φn)

{ψ1, . . . ,ψm} |= φ1 ∨ · · · ∨ φn

11

Notation for Sequents

ψ1, . . . ,ψm
| {z }

Antecedent

⇒ φ1, . . . ,φn
| {z }

Succedent

Consider antecedent/succedent as sets of formulae (may be empty)

12

Notation for Sequents

ψ1, . . . ,ψm
| {z }

Antecedent

⇒ φ1, . . . ,φn
| {z }

Succedent

Consider antecedent/succedent as sets of formulae (may be empty)

Conventions:

• empty antecedent = empty conjunction = ⊤

• empty succedent = empty disjunction = ⊥

13

Notation for Sequents

ψ1, . . . ,ψm
| {z }

Antecedent

⇒ φ1, . . . ,φn
| {z }

Succedent

Consider antecedent/succedent as sets of formulae (may be empty)

Conventions:

• empty antecedent = empty conjunction = ⊤

• empty succedent = empty disjunction = ⊥

Alternative notation:

ψ1, . . . ,ψm ⊢ φ1, . . . ,φn

Not used here because of the risk of potential confusion with the provability

relation

14

Notation for Sequents

ψ1, . . . ,ψm
| {z }

Antecedent

⇒ φ1, . . . ,φn
| {z }

Succedent

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables:

φ,ψ, . . . match formulas, Γ,∆, ... match sets of formulas

Characterize infinitely many sequents with a single schematic sequent:

Example: Γ ⇒ ∆,φ ∧ ψ

Matches any sequent with occurrence of conjunction in succedent

We call φ ∧ ψ main formula and Γ,∆ side formulae of sequent.

15

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects semantics

of connectives as closely as possible

Rule Name

premises
z }| {

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
| {z }

conclusion

.

16

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects semantics

of connectives as closely as possible

Rule Name

premises
z }| {

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
| {z }

conclusion

.

Example:

andRight
Γ ⇒ φ,∆ Γ ⇒ ψ,∆

Γ ⇒ φ ∧ ψ,∆
.

17

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects semantics

of connectives as closely as possible

Rule Name

premises
z }| {

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
| {z }

conclusion

.

Example:

andRight
Γ ⇒ φ,∆ Γ ⇒ ψ,∆

Γ ⇒ φ ∧ ψ,∆
.

Informal meaning:

In order to prove that Γ entails (φ ∧ ψ) ∨ ∆ we need to prove that:

Γ entails φ ∨ ∆ and

Γ entails ψ ∨ ∆

18

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects semantics

of connectives as closely as possible

Rule Name

premises
z }| {

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
| {z }

conclusion

.

Example:

andRight
Γ ⇒ φ,∆ Γ ⇒ ψ,∆

Γ ⇒ φ ∧ ψ,∆
.

Sound rule (essential): |= (Γ1 → ∆1 ∧ · · · ∧ Γn → ∆n) → (Γ → ∆)

19

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects semantics

of connectives as closely as possible

Rule Name

premises
z }| {

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
| {z }

conclusion

.

Example:

andRight
Γ ⇒ φ,∆ Γ ⇒ ψ,∆

Γ ⇒ φ ∧ ψ,∆
.

Sound rule (essential): If |= (Γ1 → ∆1) and . . . and |= (Γn → ∆n) then

|= (Γ → ∆)

Complete rule (desirable): If |= (Γ→∆) then |= (Γ1→∆1), . . . |= (Γn→∆n)

20

Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not Γ⇒φ,∆
Γ,¬φ⇒∆

Γ,φ⇒∆
Γ⇒¬φ,∆

21

Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not Γ⇒φ,∆
Γ,¬φ⇒∆

Γ,φ⇒∆
Γ⇒¬φ,∆

and Γ,φ,ψ⇒∆
Γ,φ∧ψ⇒∆

Γ⇒φ,∆ Γ⇒ψ,∆
Γ⇒φ∧ψ,∆

22

Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not Γ⇒φ,∆
Γ,¬φ⇒∆

Γ,φ⇒∆
Γ⇒¬φ,∆

and Γ,φ,ψ⇒∆
Γ,φ∧ψ⇒∆

Γ⇒φ,∆ Γ⇒ψ,∆
Γ⇒φ∧ψ,∆

or Γ,φ⇒∆ Γ,ψ⇒∆
Γ,φ∨ψ⇒∆

Γ⇒φ,ψ,∆
Γ⇒φ∨ψ,∆

23

Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not Γ⇒φ,∆
Γ,¬φ⇒∆

Γ,φ⇒∆
Γ⇒¬φ,∆

and Γ,φ,ψ⇒∆
Γ,φ∧ψ⇒∆

Γ⇒φ,∆ Γ⇒ψ,∆
Γ⇒φ∧ψ,∆

or Γ,φ⇒∆ Γ,ψ⇒∆
Γ,φ∨ψ⇒∆

Γ⇒φ,ψ,∆
Γ⇒φ∨ψ,∆

imp Γ⇒φ,∆ Γ,ψ⇒∆
Γ,φ→ψ⇒∆

Γ,φ⇒ψ,∆
Γ⇒φ→ψ,∆

24

Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not Γ⇒φ,∆
Γ,¬φ⇒∆

Γ,φ⇒∆
Γ⇒¬φ,∆

and Γ,φ,ψ⇒∆
Γ,φ∧ψ⇒∆

Γ⇒φ,∆ Γ⇒ψ,∆
Γ⇒φ∧ψ,∆

or Γ,φ⇒∆ Γ,ψ⇒∆
Γ,φ∨ψ⇒∆

Γ⇒φ,ψ,∆
Γ⇒φ∨ψ,∆

imp Γ⇒φ,∆ Γ,ψ⇒∆
Γ,φ→ψ⇒∆

Γ,φ⇒ψ,∆
Γ⇒φ→ψ,∆

close
Γ,φ⇒φ,∆

true
Γ⇒true,∆

false
Γ,false⇒∆

25

Justification of Rules

Compute rules by applying semantic definitions

26

Justification of Rules

Compute rules by applying semantic definitions

orRight Γ⇒φ,ψ,∆
Γ⇒φ∨ψ,∆

Follows directly from semantics of sequents

27

Justification of Rules

Compute rules by applying semantic definitions

orRight Γ⇒φ,ψ,∆
Γ⇒φ∨ψ,∆

Follows directly from semantics of sequents

andRight Γ⇒φ,∆ Γ⇒ψ,∆
Γ⇒φ∧ψ,∆

|= Γ → (φ ∧ ψ) ∨ ∆ iff (|= Γ → φ ∨ ∆ and |= Γ → ψ ∨ ∆)

28

Sequent Calculus Proofs

Goal to prove: G = (ψ1, . . . ,ψm ⇒ φ1, . . . ,φn)

29

Sequent Calculus Proofs

Goal to prove: G = (ψ1, . . . ,ψm ⇒ φ1, . . . ,φn)

• find rule R whose conclusion matches G

• instantiate R such that conclusion identical to G

• recursively find proofs for resulting premisses G1, ...,Gr

• tree structure with goal as root

• close proof branch when rule without premises encountered

30

A Simple Proof

⇒ (p ∧ (p → q)) → q)

31

A Simple Proof

p ∧ (p → q) ⇒ q (imp), right

⇒ (p ∧ (p → q)) → q)

32

A Simple Proof

p, (p → q) ⇒ q (and), left

p ∧ (p → q) ⇒ q (imp), right

⇒ (p ∧ (p → q)) → q)

33

A Simple Proof

p ⇒ q, p p, q ⇒ q (imp), left

p, (p → q) ⇒ q (and), left

p ∧ (p → q) ⇒ q (imp), right

⇒ (p ∧ (p → q)) → q)

34

A Simple Proof

close, close

p ⇒ q, p p, q ⇒ q (imp), left

p, (p → q) ⇒ q (and), left

p ∧ (p → q) ⇒ q (imp), right

⇒ (p ∧ (p → q)) → q)

35

A Simple Proof

close * close *

p ⇒ q, p p, q ⇒ q

p, (p → q) ⇒ q

p ∧ (p → q) ⇒ q

⇒ (p ∧ (p → q)) → q)

A proof is closed iff all its branches are closed

36

Soundness, Completeness, Termination

Soundness and completeness can be proved for every rule:

Sound: If |= (Γ1 → ∆1) and . . . and |= (Γn → ∆n) then |= (Γ → ∆)

Complete: If |= (Γ→∆) then |= (Γ1→∆1), . . . |= (Γn→∆n)

37

Soundness, Completeness

Soundness and completeness can be proved for every rule:

Sound: If |= (Γ1 → ∆1) and . . . and |= (Γn → ∆n) then |= (Γ → ∆)

Complete: If |= (Γ→∆) then |= (Γ1→∆1), . . . |= (Γn→∆n)

Consequence: The following are equivalent:

(1) Γ |= ∆

(2) there exists a proof in the sequent calculus for Γ ⇒ ∆.

38

The Propositional Resolution Calculus

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

39

The Resolution Calculus Res

These are schematic inference rules; for each substitution of the

schematic variables C , D, and A, respectively, by propositional clauses

and atoms we obtain an inference rule.

As “∨” is considered associative and commutative, we assume that

A and ¬A can occur anywhere in their respective clauses.

40

Sample Refutation

1. ¬P ∨ ¬P ∨ Q (given)

2. P ∨ Q (given)

3. ¬R ∨ ¬Q (given)

4. R (given)

5. ¬P ∨ Q ∨ Q (Res. 2. into 1.)

6. ¬P ∨ Q (Fact. 5.)

7. Q ∨ Q (Res. 2. into 6.)

8. Q (Fact. 7.)

9. ¬R (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)

41

Resolution with Implicit Factorization RIF

C ∨ A ∨ . . . ∨ A ¬A ∨ D

C ∨ D

1. ¬P ∨ ¬P ∨ Q (given)

2. P ∨ Q (given)

3. ¬R ∨ ¬Q (given)

4. R (given)

5. ¬P ∨ Q ∨ Q (Res. 2. into 1.)

6. Q ∨ Q ∨ Q (Res. 2. into 5.)

7. ¬R (Res. 6. into 3.)

8. ⊥ (Res. 4. into 7.)

42

Soundness and Completeness

Theorem 1.6. Propositional resolution is sound.

for both the resolution rule and the positive factorization rule

the conclusion of the inference is entailed by the premises.

Theorem 1.7. Propositional resolution is refutationally complete.

If N |=⊥ we can deduce ⊥ starting from N and using

the inference rules of the propositional resolution calculus.

43

The DPLL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set N

of clauses), check whether it is satisfiable (and optionally: output one

solution, if it is satisfiable).

44

Satisfiability of Clause Sets

A |= N if and only if A |= C for all clauses C in N.

A |= C if and only if A |= L for some literal L ∈ C .

45

Partial Valuations

Since we will construct satisfying valuations incrementally,

we consider partial valuations

(that is, partial mappings A : Π → {0, 1}).

We start with an empty valuation and try to extend it

step by step to all variables occurring in N.

If A is a partial valuation, then literals and clauses can be

true, false, or undefined under A.

A clause is true under A if one of its literals is true;

it is false (or “conflicting”) if all its literals are false;

otherwise it is undefined (or “unresolved”).

46

Unit Clauses

Observation:

Let A be a partial valuation. If the set N contains a clause C , such

that all literals but one in C are false under A, then the following

properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.

47

Pure Literals

One more observation:

Let A be a partial valuation and P a variable that is undefined under

A. If P occurs only positively (or only negatively) in the unresolved

clauses in N, then the following properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

assigns true (false) to P.

P is called a pure literal.

48

The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(clause set N, partial valuation A) {

if (all clauses in N are true under A) return true;

elsif (some clause in N is false under A) return false;

elsif (N contains unit clause P) return DPLL(N, A ∪ {P 7→ 1});

elsif (N contains unit clause ¬P) return DPLL(N, A ∪ {P 7→ 0});

elsif (N contains pure literal P) return DPLL(N, A ∪ {P 7→ 1});

elsif (N contains pure literal ¬P) return DPLL(N, A ∪ {P 7→ 0});

else {

let P be some undefined variable in N;

if (DPLL(N, A ∪ {P 7→ 0})) return true;

else return DPLL(N, A ∪ {P 7→ 1});

}

}

49

The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with the clause set N and with an empty

partial valuation A.

50

The Davis-Putnam-Logemann-Loveland Proc.

In practice, there are several changes to the procedure:

The pure literal check is often omitted (it is too expensive).

The branching variable is not chosen randomly.

The algorithm is implemented iteratively;

the backtrack stack is managed explicitly

(it may be possible and useful to backtrack more than one level).

51

DPLL Iteratively

An iterative (and generalized) version:

status = preprocess();

if (status != UNKNOWN) return status;

while(1) {

decide_next_branch();

while(1) {

status = deduce();

if (status == CONFLICT) {

blevel = analyze_conflict();

if (blevel == 0) return UNSATISFIABLE;

else backtrack(blevel); }

else if (status == SATISFIABLE) return SATISFIABLE;

else break;

}

}

52

DPLL Iteratively

preprocess()

preprocess the input (as far as it is possible without branching);

return CONFLICT or SATISFIABLE or UNKNOWN.

decide_next_branch()

choose the right undefined variable to branch;

decide whether to set it to 0 or 1;

increase the backtrack level.

53

DPLL Iteratively

deduce()

make further assignments to variables (e.g., using the unit clause

rule) until a satisfying assignment is found, or until a conflict is

found, or until branching becomes necessary;

return CONFLICT or SATISFIABLE or UNKNOWN.

54

DPLL Iteratively

analyze_conflict()

check where to backtrack.

backtrack(blevel)

backtrack to blevel;

flip the branching variable on that level;

undo the variable assignments in between.

55

Branching Heuristics

Choosing the right undefined variable to branch is important for

efficiency, but the branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be recomputed

too frequently.

In general: choose variables that occur frequently.

56

The Deduction Algorithm

For applying the unit rule, we need to know the number of literals in

a clause that are not false.

Maintaining this number is expensive, however.

57

The Deduction Algorithm

Better approach: “Two watched literals”:

In each clause, select two (currently undefined) “watched” literals.

For each variable P, keep a list of all clauses in which P is watched

and a list of all clauses in which ¬P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses in

which P (or ¬P) is watched and watch another literal (that is true

or undefined) in this clause if possible.

Watched literal information need not be restored upon backtracking.

58

Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further

branches.

Method: Learning:

If a conflicting clause is found, use the resolution rule to derive a

new clause and add it to the current set of clauses.

Problem: This may produce a large number of new clauses;

therefore it may become necessary to delete some of them afterwards

to save space.

59

Backjumping

Related technique:

non-chronological backtracking (“backjumping”):

If a conflict is independent of some earlier branch, try to skip that

over that backtrack level.

60

Restart

Runtimes of DPLL-style procedures depend extremely on the choice

of branching variables.

If no solution is found within a certain time limit, it can be useful to

restart from scratch with another choice of branchings (but learned

clauses may be kept).

61

A succinct formulation

State: M||F ,

where:

- M partial assignment (sequence of literals),

some literals are annotated (Ld : decision literal)

- F clause set.

62

A succinct formulation

UnitPropagation

M||F ,C ∨ L ⇒ M, L||F ,C ∨ L if M |= ¬C , and L undef. in M

Decide

M||F ⇒ M, Ld ||F if L or ¬L occurs in F , L undef. in M

Fail

M||F ,C ⇒ Fail if M |= ¬C , M contains no decision literals

Backjump

M, Ld ,N||F ⇒ M, L′ ||F if

8
>>>>><

>>>>>:

there is some clause C ∨ L′ s.t.:

F |= C ∨ L′ ,M |= ¬C ,

L′ undefined in M

L′ or ¬L′ occurs in F .

63

Example

Assignment: Clause set:

∅ ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6, P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1
d ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6, P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1
dP2 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6, P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1
dP2P3

d ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6, P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1
dP2P3

dP4 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6, P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1
dP2P3

dP4P5
d ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6, P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1
dP2P3

dP4P5
d¬P6 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6, P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Backtrack)

P1
dP2P3

dP4¬P5 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6, P6 ∨ ¬P5 ∨ ¬P2 ...

64

DPLL with learning

The DPLL system with learning consists of the four transition rules of the

Basic DPLL system, plus the following two additional rules:

Learn

M||F ⇒ M||F ,C if all atoms of C occur in F and F |= C

Forget

M||F ,C ⇒ M||F if F |= C

In these two rules, the clause C is said to be learned and forgotten,

respectively.

65

Further Information

The ideas described so far heve been implemented in the SAT checker

Chaff.

Further information:

Lintao Zhang and Sharad Malik:

The Quest for Efficient Boolean Satisfiability Solvers,

Proc. CADE-18, LNAI 2392, pp. 295–312, Springer, 2002.

66

Binary Decision Diagrams

Formulae ↔ Boolean functions

F (n Prop.Var) 7→ fF : {0, 1}n → {0, 1}

Binary decision trees:

x

y

1

y

1 00

0 1

0 1 0 1

67

Binary Decision Diagrams

With every function f : {0, 1}n → {0, 1} we can associate a decision tree

With every decision tree T we can associate a Boolean function:

P

1 1 00

0 1

0 1 0 1

root(T)

right(T)

Q Q

left(T)

Sei A : {P1, . . . ,Pn} → {0, 1}, mit A(Pi) = ai

P marks the root of T :

if A(P) = 0: fT (a) := fleft(T)(a)

is A(P) = 1: fT (a) := fright(T)(a)

0 marks the root of T : fT (a) := 0

1 markiert die Wurzel von T : fT (a) := 1

68

Binary Decision Trees

f : {0, 1}n → {0, 1} 7→

P

PP

P

P P

0 1

P

P P

0 1
P

P P

0 1
P

P P

P
0 1

0 1

0 1

0 1 10

a a a a1 2
n

2−1 2
n

1

2 2

3 3 3 3

n n n n n n

n−1 n−1 n−1

f (0...0) f (0...1) . . . f (1...0) f (1...1)

69

Binary Decision Diagrams

Formulae ↔ Boolean functions

F (n Prop.Var) 7→ fF : {0, 1}n → {0, 1}

Binary decision trees:

x

y

1

y

1 00

0 1

0 1 0 1

- exactly as inefficient as truth tables (2n+1 − 1 nodes if n prop.vars.)

- optimization possible: remove redundancies

70

Binary Decision Diagrams

Optimization: remove redundancies

1. remove duplicate leaves

2. remove unnecessary tests

3. remove duplicate nodes

71

Binary Decision Diagrams

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

x

y

1

y

1 00

0 1

0 1 0 1

72

Binary Decision Diagrams

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

x

y

1

y

0 00

0 1

0 1 0 1

x

y

1

y

0 00

0 1

0 1 0 1
0

1

73

Binary Decision Diagrams

2. remove unnecessary tests

x

y

1

y

0 00

0 1

0 1 0 1
0

1

74

Binary Decision Diagrams

2. remove unnecessary tests

x

y

1

y

0 00

0 1

0 1 0 1
0

1

0

x

y

1

0

0 1

1

75

Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

76

Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y

77

Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0

78

Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0

y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0

79

Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0 1

0 0
1

0 1

01

0

1

y y

z

x

0 1

1

x

0

0
1

0 1

0

1 0

1

y y

z

x

0 1

1

0
1

0 1

0

0

1

80

Operations with BDDs

f 7→ Bf (BDD associated with f)

g 7→ Bg (BDD associated with g)

BDD for f ∧ g : replace all 1-leaves in Bf with Bg

BDD for f ∨ g : replace all 0-leaves in Bf with Bg

BDD for ¬f : replace all 1-leaves in Bf with 0-leaves and all

0-leaves with 1 leaves.

81

Binary Decision Diagrams

Binary decision diagram (BDD): finite directed acyclic graph with:

• a unique initial node

• terminal nodes marked with 0 or 1

• non-terminal nodes marked with propositional variables

• in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.

82

Binary Decision Diagrams

Binary decision diagram (BDD): finite directed acyclic graph with:

• a unique initial node

• terminal nodes marked with 0 or 1

• non-terminal nodes marked with propositional variables

• in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.

Problem: Variables may occur several times on a path.

Solution: Ordered BDDs.

83

