Formal Specification and Verification

10.05.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Binary Decision Diagrams

$$
\begin{array}{lll}
\text { Formulae } & \leftrightarrow & \text { Boolean functions } \\
F(n \text { Prop.Var }) & \mapsto & f_{F}:\{0,1\}^{n} \rightarrow\{0,1\}
\end{array}
$$

Binary decision trees:

Binary Decision Diagrams

$$
\begin{array}{lll}
\text { Formulae } & \leftrightarrow & \text { Boolean functions } \\
F(n \text { Prop.Var }) & \mapsto & f_{F}:\{0,1\}^{n} \rightarrow\{0,1\}
\end{array}
$$

Binary decision trees:

- exactly as inefficient as truth tables ($2^{n+1}-1$ nodes if n prop.vars.)
- optimization possible: remove redundancies

Binary Decision Diagrams

Optimization: remove redundancies

1. remove duplicate leaves
2. remove unnecessary tests
3. remove duplicate nodes

Binary Decision Diagrams

Binary decision diagram (BDD): finite directed acyclic graph with:

- a unique initial node
- terminal nodes marked with 0 or 1
- non-terminal nodes marked with propositional variables
- in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.

Binary Decision Diagrams

Binary decision diagram (BDD): finite directed acyclic graph with:

- a unique initial node
- terminal nodes marked with 0 or 1
- non-terminal nodes marked with propositional variables
- in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.
Problem: Variables may occur several times on a path.
Solution: Ordered BDDs.

Ordered BDDs

[P_{1}, \ldots, P_{n}] ordered list of variables (without repetitions)
Let B be a BDD with variables $\left\{P_{1}, \ldots, P_{n}\right\}$
B has the order $\left[P_{1}, \ldots, P_{n}\right]$
if for every path $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{m}$ in B,
if $-i<j$,

- v_{i} is marked with $P_{k_{i}}$
- v_{j} ist marked with $P_{k_{j}}$
then $k_{i}<k_{j}$.
A ordered BDD (Notation: OBDD) is a BDD which has an order, for a certain ordered list of variables.

Reduced OBDDs

Let $\left[P_{1}, \ldots, P_{n}\right]$ be an order on variables.
The reduced OBDD, which represents a given function f is unique.

Theorem:
Let B_{1}, B_{2} be two reduced OBDDs with the same variable ordering.
If B_{1} and B_{2} represent the same function, then B_{1} and B_{2} are equal.

OBDDs have a canonical form, namely the reduced OBDD.

The role of the ordering on variables

Example $\left(P_{1} \vee P_{2}\right) \wedge\left(P_{3} \vee P_{4}\right) \wedge \cdots \wedge\left(P_{2 n-1} \vee P_{2 n}\right)$
$\left[P_{1}, P_{2}, \ldots, P_{2 n-1}, P_{2 n}\right]: \quad$ OBDD with $2 n+2$ nodes
$\left[P_{1}, P_{3}, \ldots, P_{2 n-1}, P_{2}, \ldots, P_{2 n}\right]:$ OBDD with 2^{n+1} nodes

Advantages of canonical representations

- Absence of redundant variables

If the value of f does not depend on the i-argument $\left(P_{i}\right)$ then no reduced OBDD contains the variable P_{i}

- Equivalence test
$F_{i} \mapsto f_{i} \mapsto B_{i}$ (OBDDs with compatible variable ordering), $i=1,2$
Reduce $B_{i}, i=1,2$. $F_{1} \equiv F_{2}$ iff. B_{1} and B_{2} identical.

Advantages of canonical representations

- Validity test
$F \mapsto f \mapsto B$ (OBDD)
F valid iff its reduced OBDD is $B_{1}:=1$
- Entailment test
$F \models G$ iff the reduced OBDD for $F \wedge \neg G$ is $B_{0}:=0$
- Satisfiability test
F satisfiable iff its reduced OBDD is not B_{0}.

Operations with OBDDs

- Reduce

Apply reduction steps 1-3

- Apply

Boolean operations

- Restrict

Compute OBDD for $F\left[0 / P_{i}\right]$ and $F\left[1 / P_{i}\right]$

- Exists

Compute OBDD for $\exists P_{i} F\left(P_{1}, \ldots, P_{n}\right)$

Operations with OBDDs

- Reduce

Apply reduction steps 1-3

- Apply

Boolean operations

- Restrict

Compute OBDD for $F\left[0 / P_{i}\right]$ and $F\left[1 / P_{i}\right]$

- Exists

Compute OBDD for $\exists P_{i} F\left(P_{1}, \ldots, P_{n}\right)$

Reduce

remove redundancies

1. remove duplicate leaves
2. remove unnecessary tests
3. remove duplicate nodes

Reduce

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

Reduce

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

Reduce

2. remove unnecessary tests

3. remove unnecessary tests

Reduce

3. remove duplicate non-terminal nodes:

Reduce

The algorithm reduce traverses an OBDD B layer by layer in a bottom-up fashion, beginning with the terminal nodes.

In traversing B, it assigns an integer label $i d(n)$ to each node n of B, in such a way that the subOBDDs with root nodes n and m denote the same boolean function iff, $i d(n)=i d(m)$.

Reduce

Terminal nodes:

Since reduce starts with the layer of terminal nodes, it assigns the first label (say 0) to the first 0 -node it encounters. All other terminal 0 -nodes denote the same function as the first 0 -node and therefore get the same label (compare with reduction 1).

Similarly, the 1 -nodes all get the next label, say 1 .

Reduce

Non-terminal nodes

Now let us inductively assume that reduce has already assigned integer labels to all nodes of a layer $>i$ (i.e. all terminal nodes and P_{j}-nodes with $j>i$).
We describe how nodes of layer i (i.e. P_{i}-nodes) are being handled.
$n \mapsto l o(n)$ node reached on branch labelled with 0
$h i(n)$ node reached on branch labelled with 1
Given an P_{i}-node n, there are three ways in which it may get its label:

- If $i d(l o(n))=i d(h i(n))$, we set $i d(n)$ to be that label (reduction 2)
- If there is another node m s.t. n and m have same variable P_{i}, and $i d(l o(n))=i d(l o(m))$ and $i d(h i(n))=i d(h i(m))$, then we set $i d(n):=i d(m)$ (reduction 3)
- Otherwise, we set $i d(n)$ to the next unused integer label.

Operations with OBDDs

- Reduce

Apply reduction steps 1-3

- Apply

Boolean operations

- Restrict

Compute OBDD for $F\left[0 / P_{i}\right]$ and $F\left[1 / P_{i}\right]$

- Exists

Compute OBDD for $\exists P_{i} F\left(P_{1}, \ldots, P_{n}\right)$

Reminder: BDDs

$f \mapsto B_{f}($ BDD associated with $f)$
$g \mapsto B_{g}$ (BDD associated with g)

BDD for $f \wedge g$: replace all 1-leaves in B_{f} with B_{g}

BDD for $f \vee g$: replace all 0-leaves in B_{f} with B_{g}

BDD for $\neg f$: replace all 1-leaves in B_{f} with 0-leaves and all 0-leaves with 1 leaves.

Reminder: BDDs

$f \mapsto B_{f}($ BDD associated with $f)$
$g \mapsto B_{g}($ BDD associated with $g)$

BDD for $f \wedge g$: replace all 1-leaves in B_{f} with B_{g}

BDD for $f \vee g$: replace all 0-leaves in B_{f} with B_{g}

BDD for $\neg f$: replace all 1-leaves in B_{f} with 0-leaves and all 0-leaves with 1 leaves.

If applied to OBDDs, the resulting BDD is not ordered!

Apply

Idea: Use the Shannon expansion for F.

$$
F \equiv(\neg P \wedge F[0 / P]) \vee(P \wedge F[1 / P])
$$

The function apply is based on the Shannon expansion for FopG:

$$
F \mathrm{op} G=\left(\neg P_{i} \wedge\left(F\left[0 / P_{i}\right] \mathrm{op} G\left[0 / P_{i}\right]\right)\right) \vee\left(P_{i} \wedge\left(F\left[1 / P_{i}\right] \mathrm{op} G\left[1 / P_{i}\right]\right)\right)
$$

Apply

This is used as a control structure of apply which proceeds from the roots of B_{F} and B_{G} downwards to construct nodes of the OBDD $B_{\text {Fop } G}$.

Let r_{f} be the root node of B_{F} and r_{g} the root node of B_{G}.

1. If both r_{f}, r_{g} are terminal nodes with labels I_{f} and I_{g}, respectively (0 or 1), we compute the value $I_{f} \circ p I_{g}$ and let the resulting OBDD be B_{0} if the value is 0 and B_{1} otherwise.

Apply

This is used as a control structure of apply which proceeds from the roots of B_{F} and B_{G} downwards to construct nodes of the OBDD $B_{\text {Fop } G}$.

Let r_{f} be the root node of B_{F} and r_{g} the root node of B_{G}.

In the remaining cases, at least one of the root nodes is a non-terminal.
2. Suppose that both root nodes are P_{i}-nodes.

Then we create an P_{i}-node n with

- the edge labelled with 0 to apply (op, lo($\left.\left.r_{f}\right), \operatorname{lo}\left(r_{g}\right)\right)$
- the edge labelled with 1 to apply(op, hi($\left.\mathrm{r}_{f}\right), h i\left(r_{g}\right)$)

Apply

This is used as a control structure of apply which proceeds from the roots of B_{F} and B_{G} downwards to construct nodes of the OBDD $B_{\text {Fop } G}$.

Let r_{f} be the root node of B_{F} and r_{g} the root node of B_{G}.
3. If r_{f} is a P_{i}-node, but r_{g} is a terminal node or a P_{j}-node with $j>i$, then we know that there is no P_{i}-node in B_{G} (because the two OBDDs have a compatible ordering of boolean variables).
Thus, G is independent of $P_{i}\left(G \equiv G\left[0 / P_{i}\right] \equiv G\left[1 / P_{i}\right]\right)$.
Therefore, we create a P_{i}-node n with: - the 0 -edge to apply (op, $\left.l o\left(r_{f}\right), r_{g}\right)$ and

- the 1-edge to apply(op, $\left.h i\left(r_{f}\right), r_{g}\right)$.

4. The case in which r_{g} is a non-terminal, but r_{f} is a terminal or a P_{j}-node with $j>i$, is handled symmetrically to case 3 .

Apply

The result of this procedure might not be reduced; therefore apply finishes by calling the function reduce on the OBDD it constructed.

Operations with OBDDs

- Reduce

Apply reduction steps 1-3

- Apply

Boolean operations

- Restrict

Compute OBDD for $F\left[0 / P_{i}\right]$ and $F\left[1 / P_{i}\right]$

- Exists

Compute OBDD for $\exists P_{i} F\left(P_{1}, \ldots, P_{n}\right)$

Restrict

Given an OBDD B_{F} representing a boolean formula F, we need an algorithm restrict such that:

- restrict $\left(0, P, B_{F}\right)$ computes the reduced OBDD for $F[0 / P]$ using the same variable ordering as B_{F}.

The algorithm works as follows.
For each node n labelled with P, incoming edges are redirected to $l o(n)$ and n is removed.

Then we call reduce on the resulting OBDD.

The call restrict $\left(1, P, B_{F}\right)$ proceeds similarly, only we now redirect incoming edges to hi(n).

Operations with OBDDs

- Reduce

Apply reduction steps 1-3

- Apply

Boolean operations

- Restrict

Compute OBDD for $F\left[0 / P_{i}\right]$ and $F\left[1 / P_{i}\right]$

- Exists

Compute OBDD for $\exists P_{i} F\left(P_{1}, \ldots, P_{n}\right)$

Exists

A boolean function can be thought of as putting a constraint on the values of its argument variables.

It is useful to be able to express the relaxation of the constraint on a subset of the variables concerned.

To allow this, we write $\exists P . F$ for the boolean function F with the constraint on P relaxed.

Formally, $\exists P . F$ is defined as $F[0 / P] \vee F[1 / P]$
that is, $\exists P . F$ is true if F could be made true by putting P to 0 or to 1 .

Exists

Formally, $\exists P . F$ is defined as $F[0 / P] \vee F[1 / P]$
that is, $\exists P . F$ is true if F could be made true by putting P to 0 or to 1 .

Therefore the exists algorithm can be implemented in terms of the algorithms apply and restrict as:

$$
\operatorname{exists}(P, F):=\operatorname{apply}\left(\vee, \text { restrict }\left(0, P, B_{F}\right), \text { restrict }\left(1, P, B_{F}\right)\right)
$$

