Formal Specification and Verification

Deductive Verification: An introduction

$$
10.07 .2012
$$

Viorica Sofronie-Stokkermans
e-mail: sofronie@uni-koblenz.de

Overview

- Model checking:

Finite transition systems / CTL properties
States are "entities" (no precise description, except for labelling functions)
No precise description of actions (only \rightarrow important)

Overview

- Model checking:

Finite transition systems / CTL properties
States are "entities" (no precise description, except for labelling functions)
No precise description of actions (only \rightarrow important)

Extensions in two possible directions:

- More precise description of the actions/events
- Propositional Dynamic Logic
(last time)
- Hoare logic (not discussed in this lecture)
- More precise description of states (and possibly also of actions)
- succinct representation: formulae represent a set of states
- deductive verification

Transition systems (Reminder)

- Model to describe the behaviour of systems
- Digraphs where nodes represent states, and edges model transitions
- State: Examples
- the current colour of a traffic light
- the current values of all program variables + the program counter
- the current value of the registers together with the values of the input bits
- Transition ("state change"): Examples
- a switch from one colour to another
- the execution of a program statement
- the change of the registers and output bits for a new input

Transition systems

Definition.

A transition system $T S$ is a tuple $(S, A c t, \rightarrow, I, A P, L)$ where:

- S is a set of states
- Act is a set of actions
- $\rightarrow \subseteq S \times A c t \times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- $A P$ is a set of atomic propositions
- $L: S \rightarrow 2^{A P}$ is a labeling function
S and Act are either finite or countably infinite
Notation: $s \xrightarrow{\alpha} s^{\prime}$ instead of $\left(s, \alpha, s^{\prime}\right) \in \rightarrow$.

Programs and transition systems

Program graph representation

Program graph representation

Some preliminaries

- typed variables with a valuation that assigns values in a fixed structure to variables
- e.g., $\beta(x)=17$ and $\beta(y)=-2$
- Boolean conditions: set of formulae over Var
- propositional logic formulas whose propositions are of the form " $x \in D$ "
$-(-3<x \leq 5) \wedge(y=$ green $) \wedge\left(x \leq 2 * x^{\prime}\right)$
- effect of the actions is formalized by means of a mapping:

$$
\text { Effect : Act } \times \text { Eval(Var) } \rightarrow \text { Eval(Var) }
$$

- e.g., $\alpha \equiv x:=y+5$ and evaluation $\beta(x)=17$ and $\beta(y)=-2$
$-\operatorname{Effect}(\alpha, \beta)(x)=\beta(y)+5=3$,
$-\operatorname{Effect}(\alpha, \beta)(y)=\beta(y)=-2$

Program graph representation

Program graphs

A program graph PG over set Var of typed variables is a tuple

$$
\left(\text { Loc, Act, Effect, } \rightarrow, L o c_{0}, g_{0}\right)
$$

where

- Loc is a set of locations with initial locations $L o c_{0} \subseteq \operatorname{Loc}$
- Act is a set of actions
- Effect : Act \times Eval(Var) \rightarrow Eval(Var) is the effect function
- $\rightarrow \subseteq \operatorname{Loc} \times(\underbrace{\text { Cond(Var) }}_{\text {Boolean conditions on Var }} \times A c t) \times$ Loc, transition relation
- $g_{0} \in \operatorname{Cond}($ Var $)$ is the initial condition.

Notation: $I \xrightarrow{g: \alpha} I^{\prime}$ denotes $\left(I, g, \alpha, I^{\prime}\right) \in \rightarrow$.

From program graphs to transition systems

- Basic strategy: unfolding
- state $=$ location (current control) $I+$ data valuation β
- initial state $=$ initial location + data valuation satisfying the initial condition g_{0}
- Propositions and labeling
- propositions: "at l " and " $x \in D$ " for $D \subseteq \operatorname{dom}(x)$
$-\langle I, \beta\rangle$ is labeled with "at I " and all conditions that hold in β.
- $I \xrightarrow{g: \alpha} I^{\prime}$ and g holds in β then $\left\langle I, \beta>\xrightarrow{\alpha}<I^{\prime}, \operatorname{Effect}(<I, \beta>)\right\rangle$

Transition systems for program graphs

The transition system $T S(P G)$ of program graph

$$
P G=\left(\text { Loc }, \text { Act }, \text { Effect }, \rightarrow, L o c_{0}, g_{0}\right)
$$

over set Var of variables is the tuple $(S, A c t, \rightarrow, I, A P, L)$ where:

- $S=$ Loc \times Eval(Var)
- $\rightarrow S \times A c t \times S$ is defined by the rule:

If $I \xrightarrow{\mathrm{~g}: \alpha} I^{\prime}$ and $\beta \models g$ then $\left\langle I, \beta>\xrightarrow{\alpha}<I^{\prime}, \operatorname{Effect}(<I, \beta>)>\right.$

- $I=\left\{\langle I, \beta\rangle \mid I \in \operatorname{Loc}_{0}, \beta \models g_{0}\right\}$
- $A P=\operatorname{Loc} \cup \operatorname{Cond}($ Var $)$ and
- $L(<I, \beta>)=\{I\} \cup\{g \in \operatorname{Cond}(\operatorname{Var}) \mid \beta \models g\}$.

Problem

Set of states: $S=\operatorname{Loc} \times \operatorname{Eval}(\operatorname{Var})$

Eval(Var) can be very large (some variables can have values in large data domains e.g. integers)

Therefore it is also difficult to concretely represent \rightarrow (the relation usually very large as well)

Solution

Succinct representation of sets of states and of transitions between states

- Set of states: Formula (property of all states in the set)
- Transitions: Formulae (relation between the old values of the variables and the new values of the variables)

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
        x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```


Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
        x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```


States:

(I, β), where $/$ location and β assignment of values to the variables.

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
    x++;
}
if (x >= z) then skip else goto 5;
exit
5: error
```


States:

(I, β), where $/$ location and β assignment of values to the variables.
Idea: Take into account an additional variable pc (program counter), having as domain the set of locations.

State: assignment of values to the variables and to pc

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
    x++;
}
: if (x >= z) then skip else goto 5;
: exit
5: error
```


States:

(I, β), where $/$ location and β assignment of values to the variables.
Idea: Take into account an additional variable pc (program counter), having as domain the set of locations.

State: assignment of values to the variables and to pc

Set of states: Logical formula
Example:
$y \geq z$: The set of all states (I, β) for which $\beta(y) \geq \beta(z)$ (i.e. $\beta \models y \geq z$)

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
        x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```

Transition relation: $(I, \beta) \rightarrow\left(I^{\prime}, \beta^{\prime}\right)$

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
    x++;
}
: if (x >= z) then skip else goto 5;
exit
error
```

Transition relation: $(I, \beta) \rightarrow\left(I^{\prime}, \beta^{\prime}\right)$
Expressed by logical formulae: Formula containing primed and unprimed variables. Example:

- $\rho_{1}=\left(\operatorname{move}\left(I_{1}, l_{2}\right) \wedge y \geq z \wedge \operatorname{skip}(x, y, z)\right)$
- $\rho_{2}=\left(\operatorname{move}\left(l_{2}, l_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right)$
- $\rho_{3}=\left(\operatorname{move}\left(I_{2}, l_{3}\right) \wedge x \geq y \wedge \operatorname{skip}(x, y, z)\right)$
- $\rho_{4}=\left(\operatorname{move}\left(I_{3}, I_{4}\right) \wedge x \geq z \wedge \operatorname{skip}(x, y, z)\right)$
- $\rho_{5}=\left(\operatorname{move}\left(I_{3} ; I_{5}\right) \wedge x+1 \leq z \wedge \operatorname{skip}(x, y, z)\right)$

Abbreviations:

$$
\begin{aligned}
& \operatorname{move}\left(I, I^{\prime}\right):=\left(p c=I \wedge p c^{\prime}=I^{\prime}\right) \\
& \operatorname{skip}\left(v_{1}, \ldots, v_{n}\right):=\left(v_{1}^{\prime}=v_{1} \wedge \cdots \wedge v_{n}^{\prime}=v_{n}\right)
\end{aligned}
$$

Programs as transition systems

Verification problem: Program + Description of the "bad" states
Succinct representation:

$$
P=(\text { Var, pc, Init }, \mathcal{R}) \quad \phi_{\mathrm{err}}
$$

- V - finite (ordered) set of program variables
- $p c$ - program counter variable ($p c$ included in V)
- Init - initiation condition given by formula over V
- \mathcal{R} - a finite set of transition relations

Every transition relation $\rho \in \mathcal{R}$ is given by a formula over the variables V and their primed versions V^{\prime}

- $\phi_{\text {err }}$ - an error condition given by a formula over V

States, sets and relations

- Each program variable x is assigned a domain of values D_{x}.
- Program state $=$ function that assigns each program variable a value from its respective domain
- $S=$ set of program states
- Formula with free variables in $V=$ set of program states
- Formula with free variables in V and $V^{\prime}=$ binary relation over program states
- First component of each pair refers to values of the variables V
- Second component of the pair refers to values of the variables V^{\prime} (typically the new variables of the variables in V after an instruction was executed)

States, sets and relations

- We identify formulas with the sets and relations that they represent
- We identify the entailment relation between formulas \models with set inclusion
- We identify the satisfaction relation \models between valuations and formulas, with the membership relation.

States, sets and relations

- We identify formulas with the sets and relations that they represent
- We identify the entailment relation between formulas \models with set inclusion
- We identify the satisfaction relation \models between valuations and formulas, with the membership relation.

Example:

- Formula $y \geq z=$ set of program states in which the value of the variable y is greater than the value of z
- Formula $y^{\prime} \geq z=$ binary relation over program states, $=$ set of pairs of program states $\left(s_{1}, s_{2}\right)$ in which the value of the variable y in the second state s_{2} is greater than the value of z in the first state s_{1}

States, sets and relations

- We identify formulas with the sets and relations that they represent
- We identify the entailment relation between formulas \models with set inclusion
- We identify the satisfaction relation \models between valuations and formulas, with the membership relation.

Example:

- Formula $y \geq z=$ set of program states in which the value of the variable y is greater than the value of z
- Formula $y^{\prime} \geq z=$ binary relation over program states, $=$ set of pairs of program states $\left(s_{1}, s_{2}\right)$ in which the value of the variable y in the second state s_{2} is greater than the value of z in the first state s_{1}
- If program state s assigns $1,3,2$, and I_{1} to program variables x, y, z, and $p c$, respectively, then $s \models y \geq z$

States, sets and relations

- We identify formulas with the sets and relations that they represent
- We identify the entailment relation between formulas \models with set inclusion
- We identify the satisfaction relation \models between valuations and formulas, with the membership relation.

Example:

- Formula $y \geq z=$ set of program states in which the value of the variable y is greater than the value of z
- Formula $y^{\prime} \geq z=$ binary relation over program states, $=$ set of pairs of program states (s_{1}, s_{2}) in which the value of the variable y in the second state s_{2} is greater than the value of z in the first state s_{1}
- If program state s assigns $1,3,2$, and I_{1} to program variables x, y, z, and $p c$, respectively, then $s \models y \geq z$
- Logical consequence: $y \geq z \models y+1 \models z$

Example Program

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
        x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```


Example program

- Program variables $V=(p c, x, y, z)$
- Program counter pc
- Program variables x, y, and z range over integers: $D_{x}=D_{y}=D_{z}=\operatorname{lnt}$ Program counter pc ranges over control locations: $D_{p c}=L$
- Set of control locations $L=\left\{I_{1}, I_{2}, l_{3}, l_{4}, I_{5}\right\}$
- Initiation condition Init $:=\left(p c=l_{1}\right)$
- Error condition $\phi_{\mathrm{err}}:=\left(p c=l_{5}\right)$
- Program transitions $\mathcal{R}=\left\{\rho_{1}, \ldots, \rho_{5}\right\}$, where:

$$
\begin{aligned}
\rho_{1} & =\left(\operatorname{move}\left(I_{1}, l_{2}\right) \wedge y \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{2} & =\left(\operatorname{move}\left(I_{2}, l_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
\rho_{3} & =\left(\operatorname{move}\left(l_{2}, l_{3}\right) \wedge x \geq y \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{4} & =\left(\operatorname{move}\left(l_{3}, l_{4}\right) \wedge x \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{5} & =\left(\operatorname{move}\left(l_{3} ; l_{5}\right) \wedge x+1 \leq z \wedge \operatorname{skip}(x, y, z)\right)
\end{aligned}
$$

Initial state, error state, transition relation

- Each state that satisfies the initiation condition Init is called an initial state
- Each state that satisfies the error condition err is called an error state
- Program transition relation $\rho_{\mathcal{R}}$ is the union of the single-statement transition relations (formula representation: disjunction) i.e.,

$$
\rho_{\mathcal{R}}=\bigvee_{\rho \in \mathcal{R}} \rho
$$

- The state s has a transition to the state s^{\prime} if the pair of states $\left(s, s^{\prime}\right)$ lies in the program transition relation $\rho_{\mathcal{R}}$, i.e., if $\left(s, s^{\prime}\right) \models \rho_{\mathcal{R}}$:
- $s: V \rightarrow \bigcup_{x \in V} D_{x}, \quad s(x) \in D_{x}$ for all $x \in V$
- $s^{\prime}: V^{\prime} \rightarrow \bigcup_{x \in V} D_{x}, \quad s\left(x^{\prime}\right) \in D_{x}$ for all $x \in V$
$-\beta: V \cup V^{\prime} \bigcup_{x \in X} D_{x}$ defined for every $x \in V$ by $\beta(x)=s(x), \beta\left(x^{\prime}\right)=s^{\prime}(x)$ has the property that $\beta \models \rho_{\mathcal{R}}$

Computation

A program computation is a sequence of states $s_{1} s_{2} \ldots$ such that:

- The first element is an initial state, i.e., $s_{1} \models$ Init
- Each pair of consecutive states $\left(s_{i}, s_{i+1}\right)$ is connected by a program transition, i.e., $\left(s_{i}, s_{i+1}\right) \models \rho_{\mathcal{R}}$.
- If the sequence is finite then the last element does not have any successors i.e., if the last element is s_{n}, then there is no state s such that $\left(s_{n}, s\right) \models \rho_{\mathcal{R}}$.

Example Program

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
    x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```

Example of a computation:

$$
\left(I_{1}, 1,3,2\right),\left(I_{2}, 1,3,2\right),\left(I_{2}, 2,3,2\right),\left(I_{2}, 3,3,2\right),\left(I_{3}, 3,3,2\right),\left(I_{4}, 3,3,2\right)
$$

- sequence of transitions $\rho_{1}, \rho_{2}, \rho_{2}, \rho_{3}, \rho_{4}$
- state $=$ tuple of values of program variables $p c, x, y$, and z
- last program state does not any successors

Correctness: Safety

- a state is reachable if it occurs in some program computation
- a program is safe if no error state is reachable
- ... if and only if no error state lies in $\phi_{\text {reach }}$,

$$
\phi_{\text {err }} \wedge \phi_{\text {reach }} \models \perp
$$

where $\phi_{\text {reach }}=$ set of program states which are reachable from some initial state

- ... if and only if no initial state lies in $\phi_{\text {reach }}{ }^{-1}$,

$$
\text { Init } \wedge \phi_{\text {reach }^{-1}}\left(\phi_{\text {err }}\right) \models \perp
$$

where $\phi_{\text {reach }}{ }^{-1}\left(\phi_{\text {err }}\right)=$ set of program states from which some state in $\phi_{\text {err }}$ is reachable

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
        x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```

Set of reachable states:

$$
\begin{aligned}
\phi_{\text {reach }}= & \left(p c=l_{1} \vee\right. \\
& \left(p c=l_{2} \wedge y \geq z\right) \vee \\
& \left(p c=l_{3} \wedge y \geq z \wedge x \geq y\right) \vee \\
& \left(p c=I_{4} \wedge y \geq z \wedge x \geq y\right)
\end{aligned}
$$

Post operator

Let ϕ be a formula over V
Let ρ be a formula over V and V^{\prime}

Define a post-condition function post by:

$$
\operatorname{post}(\phi, \rho)=\exists V^{\prime \prime}: \phi\left[V^{\prime \prime} / V\right] \wedge \rho\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]
$$

An application $\operatorname{post}(\phi, \rho)$ computes the image of the set ϕ under the relation ρ.

Post operator

Let ϕ be a formula over V
Let ρ be a formula over V and V^{\prime}

Define a post-condition function post by:

$$
\operatorname{post}(\phi, \rho)=\exists V^{\prime \prime}: \phi\left[V^{\prime \prime} / V\right] \wedge \rho\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]
$$

An application $\operatorname{post}(\phi, \rho)$ computes the image of the set ϕ under the relation ρ.
post distributes over disjunction wrt. each argument:

- $\operatorname{post}\left(\phi, \rho_{1} \vee \rho_{2}\right)=\operatorname{post}\left(\phi, \rho_{1}\right) \vee \operatorname{post}\left(\phi, \rho_{2}\right)$
- $\operatorname{post}\left(\phi_{1} \vee \phi_{2}, \rho\right)=\operatorname{post}\left(\phi_{1}, \rho\right) \vee \operatorname{post}\left(\phi_{2}, \rho\right)$

Application of post in example program

Set of states $\phi:=\left(p c=I_{2} \wedge y \geq z\right)$
Transition relation $\rho:=\rho_{2}$

$$
\begin{aligned}
\rho_{2}= & \left(\operatorname{move}\left(I_{2}, I_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
\operatorname{post}(\phi, \rho)= & \exists V^{\prime \prime}\left(p c=I_{2} \wedge y \geq x\right)\left[V^{\prime \prime} / V\right] \wedge \rho_{2}\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right] \\
= & \exists V^{\prime \prime}\left(p c^{\prime \prime}=I_{2} \wedge y^{\prime \prime} \geq x^{\prime \prime}\right) \wedge \\
& \left(p c^{\prime \prime}=I_{2} \wedge p c^{\prime}=I_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x^{\prime}=x^{\prime \prime}+1 \wedge y^{\prime}=y^{\prime \prime} \wedge z^{\prime}=z^{\prime \prime}\right)\left[V / V^{\prime}\right. \\
= & \exists V^{\prime \prime}\left(p c^{\prime \prime}=I_{2} \wedge y^{\prime \prime} \geq x^{\prime \prime}\right) \wedge \\
& \left(p c^{\prime \prime}=I_{2} \wedge p c=I_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x=x^{\prime \prime}+1 \wedge y=y^{\prime \prime} \wedge z=z^{\prime \prime}\right) \\
= & \left(p c=I_{2} \wedge y \leq z \wedge x \leq y\right)
\end{aligned}
$$

Application of post in example program

Set of states $\phi:=\left(p c=I_{2} \wedge y \geq z\right.$
Transition relation $\rho:=\rho_{2}$

$$
\begin{aligned}
\rho_{2}= & \left(\operatorname{move}\left(I_{2}, I_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
\operatorname{post}(\phi, \rho)= & \exists V^{\prime \prime}\left(p c=I_{2} \wedge y \geq x\right)\left[V^{\prime \prime} / V\right] \wedge \rho_{2}\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right] \\
= & \exists V^{\prime \prime}\left(p c^{\prime \prime}=I_{2} \wedge y^{\prime \prime} \geq x^{\prime \prime}\right) \wedge \\
& \left(p c^{\prime \prime}=I_{2} \wedge p c^{\prime}=I_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x^{\prime}=x^{\prime \prime}+1 \wedge y^{\prime}=y^{\prime \prime} \wedge z^{\prime}=z^{\prime \prime}\right)\left[V / V^{\prime}\right. \\
= & \exists V^{\prime \prime}\left(p c^{\prime \prime}=I_{2} \wedge y^{\prime \prime} \geq x^{\prime \prime}\right) \wedge \\
& \left(p c^{\prime \prime}=I_{2} \wedge p c=I_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x=x^{\prime \prime}+1 \wedge y=y^{\prime \prime} \wedge z=z^{\prime \prime}\right) \\
= & \left(p c=I_{2} \wedge y \leq z \wedge x \leq y\right)
\end{aligned}
$$

[Renamed] program variables:
$V=(p c, x, y, z), V^{\prime}=\left(p c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right), V^{\prime \prime}=\left(p c^{\prime \prime}, x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right)$

Iteration of post

$\operatorname{post}^{n}(\phi, \rho)=n$-fold application of post to ϕ under ρ

$$
\operatorname{post}^{n}(\phi, \rho)= \begin{cases}\phi & \text { if } n=0 \\ \left.\operatorname{post}\left(\operatorname{post}^{n-1}(\phi, \rho)\right), \rho\right) & \text { otherwise }\end{cases}
$$

Characterize $\phi_{\text {reach }}$ using iterates of post:

$$
\begin{aligned}
\phi_{\text {reach }} & =\text { Init } \vee \operatorname{post}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right) \vee \operatorname{post}\left(\operatorname{post}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right), \rho_{\mathcal{R}}\right) \vee \ldots \\
& =\bigvee_{i \geq 0} \operatorname{post}^{i}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right)
\end{aligned}
$$

disjuncts $=$ iterates for every natural number n (" ω-iteration")

Finite iteration post may suffice

Fixpoint reached in n steps if $\bigvee_{i=1}^{n}$ post $^{i}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right)=\bigvee_{i=1}^{n+1}$ post $^{i}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right)$

Then $\bigvee_{i=1}^{n}$ post $^{i}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right)=\bigvee_{i \geq 0} \operatorname{post}^{i}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right)$

Forward reachability analysis

Compute $\bigvee_{i=1}^{n}$ post $^{i}\left(\right.$ Init, $\left.\rho_{\mathcal{R}}\right), n \geq 0$.
If there exists $m \in \mathbb{N}$ such that

$$
\bigvee_{i=1}^{n} \operatorname{post}^{i}\left(\text { Init }, \rho_{\mathcal{R}}\right)=\bigvee_{i=1}^{n+1} \operatorname{post}^{i}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right)
$$

then fixpoint reached.
Let $\phi_{\text {reach }}:=\bigvee_{i=1}^{n}$ post $^{i}\left(\right.$ Init, $\left.\rho_{\mathcal{R}}\right)$
If $\phi_{\text {reach }} \cap \phi_{\text {err }}=\varnothing$ then safety is guaranteed.

Backward reachability analysis

Another possibility: Start from a bad state and compute states from which the bad state can be reached.

If the initial states are not among these states then safety is guaranteed.

Pre operator

Let ϕ be a formula over V
Let ρ be a formula over V and V^{\prime}

Define a pre-condition function pre by:

$$
\operatorname{pre}(\phi, \rho)=\exists V^{\prime}: \rho \wedge \phi\left[V^{\prime} / V\right]
$$

An application $\operatorname{pre}(\phi, \rho)$ computes the preimage of the set ϕ under the relation ρ.

Computation of pre ${ }^{n}$ similar.

Problems

It is not guaranteed that the fixpoint is reached in a finite/bounded number of steps.

Problems

It is not guaranteed that the fixpoint is reached in a finite/bounded number of steps.

Need to analyze alternative solutions

Verification

Modeling/Formalization

System Specification

Is the system safe?

Is safety guaranteed on all paths of length < n which start in an initial state?

Is the safety property an invariant of the system? Can we generate an invariant which implies safety?

Verification

Modeling/Formalization

Invariant checking; Bounded model checking

S specification $\mapsto \Sigma_{S}$ signature of $S ; \mathcal{T}_{S}$ theory of $S ; T_{S}$ transition system

$$
\operatorname{Init}(\bar{x}) ; \rho_{\mathcal{R}}\left(\bar{x}, \bar{x}^{\prime}\right)
$$

Given: $\operatorname{Safe}(x)$ formula (e.g. safety property)

- Invariant checking
(1) $\models_{\mathcal{T}_{S}} \operatorname{Init}(\bar{x}) \rightarrow \operatorname{Safe}(\bar{x})$
(Safe holds in the initial state)
(2) $\models_{\mathcal{T}_{S}} \operatorname{Safe}(\bar{x}) \wedge \rho_{\mathcal{R}}\left(\bar{x}, \bar{x}^{\prime}\right) \rightarrow \operatorname{Safe}\left(\bar{x}^{\prime}\right)$ (Safe holds before \Rightarrow holds after update)
- Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps, i.e. for all $0 \leq j \leq k$:

$$
\operatorname{Init}\left(x_{0}\right) \wedge \rho_{\mathcal{R}}\left(x_{0}, x_{1}\right) \wedge \cdots \wedge \rho_{\mathcal{R}}\left(x_{j-1}, x_{j}\right) \wedge \neg \operatorname{Safe}\left(x_{j}\right) \models_{\mathcal{T}_{S}} \perp
$$

Reasoning modulo theories

Goal: Devise efficient methods for reasoning modulo theories

Problems

- First order logic is undecidable
- In applications, theories do not occur alone \mapsto need to consider combinations of theories
+ Fragments of theories occurring in applications are often decidable
+ Often provers for the component theories can be combined efficiently

Probleme

- First order logic is undecidable
- In applications, theories do not occur alone \mapsto need to consider combinations of theories
+ Fragments of theories occurring in applications are often decidable
+ Often provers for the component theories can be combined efficiently

Important goals:

- Identify decidable theories which are important in applications (Extensions/Combinations) possibly with low complexity
- Development \& Implementation of efficient Decision Procedures

Reasoning modulo theories

Goal: Devise efficient methods for reasoning modulo theories
SAT checking (can reduce entailment to checking satisfiability)

Example:

Check whether conjunctions of constraints in linear arithmetic is satisfiable: classical methods exist, e.g. simplex.

Check whether a conjunction of equalities and disequalities of ground terms is satisfiable: methods exist (e.g. congruence closure)

Challenge: efficient methods for handling arbitrary Boolean combinations of constraints in such theories.

Possible solution: Extend the DPLL method to reasoning modulo theories.

Reminder: The DPLL algorithm

State: $M|\mid F$, where:

- M partial assignment (sequence of literals),
some literals are annotated ($L^{d}:$ decision literal)
- F clause set.

A succinct formulation

UnitPropagation
$M\|F, C \vee L \Rightarrow M, L\| F, C \vee L \quad$ if $M \models \neg C$, and L undef. in M
Decide
$M\left\|F \Rightarrow M, L^{d}\right\| F$
if L or $\neg L$ occurs in F, L undef. in M
Fail
$M \| F, C \Rightarrow$ Fail
Backjump
$M, L^{d}, N\left\|F \Rightarrow M, L^{\prime}\right\| F$
if $M \models \neg C, M$ contains no decision literals

SAT Modulo Theories (SMT)

Some problems are more naturally expressed in richer logics than just propositional logic, e.g:

- Software/Hardware verification needs reasoning about equality, arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a ground 1st-order formula with respect to a background theory T

SAT Modulo Theories (SMT)

The "very eager" approach to SMT
Method:

- translate problem into equisatisfiable propositional formula;
- use off-the-shelf SAT solver
- Why "eager"?

Search uses all theory information from the beginning

- Characteristics:
+ Can use best available SAT solver
- Sophisticated encodings are needed for each theory
- Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

- DPLL-based techniques for handling the boolean structure
- Efficient theory solvers for conjunctions of \mathcal{T}-literals

SAT Modulo Theories (SMT)

"Lazy" approaches to SMT: Idea
Example: consider $\mathcal{T}=$ UIF and the following set of clauses:

$$
\underbrace{f(g(a)) \not \approx f(c)}_{\neg P_{1}} \vee \underbrace{g(a) \approx d}_{P_{2}}, \quad \underbrace{g(a) \approx c}_{P_{3}}, \quad \underbrace{c \nsim d}_{\neg P_{4}}
$$

1. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}\right\}$ to SAT solver

SAT solver returns model $\left[\neg P_{1}, P_{3}, \neg P_{4}\right]$
Theory solver says $\neg P_{1} \wedge P_{3} \wedge \neg P_{4}$ is \mathcal{T}-inconsistent
2. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver

SAT solver returns model [$P_{1}, P_{2}, P_{3}, \neg P_{4}$]
Theory solver says $P_{1} \wedge P_{2} \wedge P_{3} \wedge \neg P_{4}$ is \mathcal{T}-inconsistent
3. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}, \neg P_{1} \vee \neg P_{2} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver SAT solver says UNSAT

Other interesting topics

- Generate invariants
- Verification by abstraction/refinement

Abstraction-based Verification

Overview

- Basic notions
- Propositional logic (Methods for checking validity, satisfiability, entailment: Inference Systems, The Resolution Procedure, Sequent calculi, DPLL, BDDs, OBDDs)
- First-order logic (Syntax, semantics, Logical theories, Herbrand models, term algebras, free algebras)
- Specification
- Algebraic specification; Transition systems; Program graph representation
- Verification
- LTL, CTL, Model checking
- Propositional dynamic logic
- Deductive verification: An introduction

