
Formal Specification and Verification

Deductive Verification: An introduction

10.07.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Overview

• Model checking:

Finite transition systems / CTL properties

States are “entities” (no precise description, except for labelling

functions)

No precise description of actions (only → important)

2

Overview

• Model checking:

Finite transition systems / CTL properties

States are “entities” (no precise description, except for labelling

functions)

No precise description of actions (only → important)

Extensions in two possible directions:

• More precise description of the actions/events

- Propositional Dynamic Logic (last time)

- Hoare logic (not discussed in this lecture)

• More precise description of states (and possibly also of actions)

- succinct representation: formulae represent a set of states

- deductive verification (today)

3

Transition systems (Reminder)

• Model to describe the behaviour of systems

• Digraphs where nodes represent states, and edges model transitions

• State: Examples

– the current colour of a traffic light

– the current values of all program variables + the program counter

– the current value of the registers together with the values of the

input bits

• Transition (“state change”): Examples

– a switch from one colour to another

– the execution of a program statement

– the change of the registers and output bits for a new input

4

Transition systems

Definition.

A transition system TS is a tuple (S ,Act,→, I ,AP, L) where:

• S is a set of states

• Act is a set of actions

• →⊆ S × Act × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s
α
→ s′ instead of (s, α, s′) ∈→.

5

Programs and transition systems

Program graph representation

6

Program graph representation

Some preliminaries

• typed variables with a valuation that assigns values in a fixed structure

to variables

- e.g., β(x) = 17 and β(y) = −2

• Boolean conditions: set of formulae over Var

- propositional logic formulas whose propositions are of the form

“x ∈ D”

- (−3 < x ≤ 5) ∧ (y = green) ∧ (x ≤ 2 ∗ x ′)

• effect of the actions is formalized by means of a mapping:

Effect : Act × Eval(Var) → Eval(Var)

- e.g., α ≡ x := y + 5 and evaluation β(x) = 17 and β(y) = −2

- Effect(α, β)(x) = β(y) + 5 = 3,

- Effect(α, β)(y) = β(y) = −2

7

Program graph representation

Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc,Act,Effect,→, Loc0, g0)

where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Act is a set of actions

• Effect : Act × Eval(Var) → Eval(Var) is the effect function

• → ⊆ Loc × (Cond(Var)
| {z }

Boolean conditions on Var

×Act) × Loc, transition relation

• g0 ∈ Cond(Var) is the initial condition.

Notation: l
g :α
→ l ′ denotes (l , g , α, l ′) ∈→.

8

From program graphs to transition systems

• Basic strategy: unfolding

- state = location (current control) l + data valuation β (l , β)

- initial state = initial location + data valuation satisfying

the initial condition g0

• Propositions and labeling

- propositions: “at l” and “x ∈ D” for D ⊆ dom(x)

- < l , β > is labeled with “at l” and all conditions that hold in β.

• l
g :α
→ l ′ and g holds in β then < l , β >

α
→< l ′ ,Effect(< l , β >) >

9

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc,Act,Effect,→,Loc0, g0)

over set Var of variables is the tuple (S ,Act,→, I ,AP, L) where:

• S = Loc × Eval(Var)

• → S × Act × S is defined by the rule:

If l
g :α
→ l ′ and β |= g then < l , β >

α
→< l ′ ,Effect(< l , β >) >

• I = {< l , β >| l ∈ Loc0, β |= g0}

• AP = Loc ∪ Cond(Var) and

• L(< l , β >) = {l} ∪ {g ∈ Cond(Var) | β |= g}.

10

Problem

Set of states: S = Loc × Eval(Var)

Eval(Var) can be very large

(some variables can have values in large data domains e.g. integers)

Therefore it is also difficult to concretely represent →

(the relation usually very large as well)

11

Solution

Succinct representation of sets of states and of transitions between states

• Set of states: Formula (property of all states in the set)

• Transitions: Formulae (relation between the old values of the variables

and the new values of the variables)

12

Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

13

Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

States:

(l , β), where l location and β assignment of values to the variables.

14

Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

States:

(l , β), where l location and β assignment of values to the variables.

Idea: Take into account an additional variable pc (program counter), having

as domain the set of locations.

State: assignment of values to the variables and to pc

15

Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

States:

(l , β), where l location and β assignment of values to the variables.

Idea: Take into account an additional variable pc (program counter), having

as domain the set of locations.

State: assignment of values to the variables and to pc

Set of states: Logical formula

Example:

y ≥ z: The set of all states (l , β) for which β(y) ≥ β(z) (i.e. β |= y ≥ z)

16

Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

Transition relation: (l , β) → (l ′ , β′)

17

Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

Transition relation: (l , β) → (l ′ , β′)
Expressed by logical formulae: Formula containing primed and unprimed variables.

Example:

• ρ1 = (move(l1, l2) ∧ y ≥ z ∧ skip(x , y , z))

• ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x′ = x + 1 ∧ skip(y , z))

• ρ3 = (move(l2, l3) ∧ x ≥ y ∧ skip(x , y , z))

• ρ4 = (move(l3, l4) ∧ x ≥ z ∧ skip(x , y , z))

• ρ5 = (move(l3; l5) ∧ x + 1 ≤ z ∧ skip(x , y , z))

Abbreviations:

move(l , l′) := (pc = l ∧ pc′ = l′)

skip(v1, . . . , vn) := (v ′

1 = v1 ∧ · · · ∧ v ′

n = vn)

18

Programs as transition systems

Verification problem: Program + Description of the “bad” states

Succinct representation:

P = (Var , pc, Init,R) φerr

• V - finite (ordered) set of program variables

• pc - program counter variable (pc included in V)

• Init - initiation condition given by formula over V

• R - a finite set of transition relations

Every transition relation ρ ∈ R is given by a formula over the variables

V and their primed versions V ′

• φerr - an error condition given by a formula over V

19

States, sets and relations

• Each program variable x is assigned a domain of values Dx .

• Program state = function that assigns each program variable a value

from its respective domain

• S = set of program states

• Formula with free variables in V = set of program states

• Formula with free variables in V and V ′ = binary relation over

program states

– First component of each pair refers to values of the variables V

– Second component of the pair refers to values of the variables V ′

(typically the new variables of the variables in V after an instruction

was executed)

20

States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.

21

States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.

Example:

• Formula y ≥ z = set of program states in which the value of the

variable y is greater than the value of z

• Formula y ′ ≥ z = binary relation over program states, = set of pairs

of program states (s1, s2) in which the value of the variable y in the

second state s2 is greater than the value of z in the first state s1

22

States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.

Example:

• Formula y ≥ z = set of program states in which the value of the variable y is

greater than the value of z

• Formula y ′ ≥ z = binary relation over program states, = set of pairs of program

states (s1, s2) in which the value of the variable y in the second state s2 is

greater than the value of z in the first state s1

• If program state s assigns 1, 3, 2, and l1 to program variables x , y , z , and pc,

respectively, then s |= y ≥ z

23

States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.

Example:

• Formula y ≥ z = set of program states in which the value of the variable y is

greater than the value of z

• Formula y ′ ≥ z = binary relation over program states, = set of pairs of program

states (s1, s2) in which the value of the variable y in the second state s2 is

greater than the value of z in the first state s1

• If program state s assigns 1, 3, 2, and l1 to program variables x , y , z , and pc,

respectively, then s |= y ≥ z

• Logical consequence: y ≥ z |= y + 1 |= z

24

Example Program

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

25

Example program

• Program variables V = (pc, x , y , z)

• Program counter pc

• Program variables x , y , and z range over integers: Dx = Dy = Dz = Int

Program counter pc ranges over control locations: Dpc = L

• Set of control locations L = {l1, l2, l3, l4, l5}

• Initiation condition Init := (pc = l1)

• Error condition φerr := (pc = l5)

• Program transitions R = {ρ1, . . . , ρ5}, where:

ρ1 = (move(l1, l2) ∧ y ≥ z ∧ skip(x , y , z))

ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

ρ3 = (move(l2, l3) ∧ x ≥ y ∧ skip(x , y , z))

ρ4 = (move(l3, l4) ∧ x ≥ z ∧ skip(x , y , z))

ρ5 = (move(l3; l5) ∧ x + 1 ≤ z ∧ skip(x , y , z))

26

Initial state, error state, transition relation

• Each state that satisfies the initiation condition Init is called an initial

state

• Each state that satisfies the error condition err is called an error state

• Program transition relation ρR is the union of the single-statement

transition relations (formula representation: disjunction) i.e.,

ρR =
_

ρ∈R

ρ

• The state s has a transition to the state s′ if the pair of states (s, s′)
lies in the program transition relation ρR, i.e., if (s, s′) |= ρR:

– s : V →
S

x∈V Dx , s(x) ∈ Dx for all x ∈ V

– s′ : V ′ →
S

x∈V Dx , s(x′) ∈ Dx for all x ∈ V

– β : V ∪V ′
S

x∈X Dx defined for every x ∈ V by β(x) = s(x), β(x′) = s′(x)

has the property that β |= ρR

27

Computation

A program computation is a sequence of states s1s2 . . . such that:

• The first element is an initial state, i.e., s1 |= Init

• Each pair of consecutive states (si , si+1) is connected by a program

transition, i.e., (si , si+1) |= ρR.

• If the sequence is finite then the last element does not have any

successors i.e., if the last element is sn, then there is no state s such

that (sn, s) |= ρR.

28

Example Program

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

Example of a computation:

(l1, 1, 3, 2), (l2, 1, 3, 2), (l2, 2, 3, 2), (l2, 3, 3, 2), (l3, 3, 3, 2), (l4, 3, 3, 2)

• sequence of transitions ρ1, ρ2, ρ2, ρ3, ρ4

• state = tuple of values of program variables pc, x , y , and z

• last program state does not any successors

29

Correctness: Safety

• a state is reachable if it occurs in some program computation

• a program is safe if no error state is reachable

• . . . if and only if no error state lies in φreach,

φerr ∧ φreach |=⊥

where φreach = set of program states which are reachable from some

initial state

• . . . if and only if no initial state lies in φreach−1 ,

Init ∧ φreach−1(φerr) |=⊥

where φreach−1(φerr) = set of program states from which some state

in φerr is reachable

30

Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

Set of reachable states:

φreach = (pc = l1∨

(pc = l2 ∧ y ≥ z)∨

(pc = l3 ∧ y ≥ z ∧ x ≥ y)∨

(pc = l4 ∧ y ≥ z ∧ x ≥ y)

31

Post operator

Let φ be a formula over V

Let ρ be a formula over V and V ′

Define a post-condition function post by:

post(φ, ρ) =
E

V ′′ : φ[V ′′/V] ∧ ρ[V ′′/V][V /V ′]

An application post(φ, ρ) computes the image of the set φ under the

relation ρ.

32

Post operator

Let φ be a formula over V

Let ρ be a formula over V and V ′

Define a post-condition function post by:

post(φ, ρ) =
E

V ′′ : φ[V ′′/V] ∧ ρ[V ′′/V][V /V ′]

An application post(φ, ρ) computes the image of the set φ under the

relation ρ.

post distributes over disjunction wrt. each argument:

• post(φ, ρ1 ∨ ρ2) = post(φ, ρ1) ∨ post(φ, ρ2)

• post(φ1 ∨ φ2, ρ) = post(φ1, ρ) ∨ post(φ2, ρ)

33

Application of post in example program

Set of states φ := (pc = l2 ∧ y ≥ z)

Transition relation ρ := ρ2

ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

post(φ, ρ) =

E

V ′′(pc = l2 ∧ y ≥ x)[V ′′/V] ∧ ρ2[V
′′/V][V/V ′]

=
E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc′ = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x′ = x′′ + 1 ∧ y ′ = y ′′ ∧ z′ = z′′)[V/V ′])

=

E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x = x′′ + 1 ∧ y = y ′′ ∧ z = z′′)

= (pc = l2 ∧ y ≤ z ∧ x ≤ y)

34

Application of post in example program

Set of states φ := (pc = l2 ∧ y ≥ z

Transition relation ρ := ρ2

ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

post(φ, ρ) =

E

V ′′(pc = l2 ∧ y ≥ x)[V ′′/V] ∧ ρ2[V
′′/V][V/V ′]

=
E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc′ = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x′ = x′′ + 1 ∧ y ′ = y ′′ ∧ z′ = z′′)[V/V ′])

=

E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x = x′′ + 1 ∧ y = y ′′ ∧ z = z′′)

= (pc = l2 ∧ y ≤ z ∧ x ≤ y)

[Renamed] program variables:

V = (pc, x , y , z), V ′ = (pc′, x′, y ′, z′), V ′′ = (pc′′, x′′, y ′′, z′′)

35

Iteration of post

postn(φ, ρ) = n-fold application of post to φ under ρ

postn(φ, ρ) =

8
<

:

φ if n = 0

post(postn−1(φ, ρ)), ρ) otherwise

Characterize φreach using iterates of post:

φreach = Init ∨ post(Init, ρR) ∨ post(post(Init, ρR), ρR) ∨ . . .

=
W

i≥0 post i (Init, ρR)

disjuncts = iterates for every natural number n (“ω-iteration”)

36

Finite iteration post may suffice

Fixpoint reached in n steps if
Wn

i=1 post i (Init, ρR) =
Wn+1

i=1 post i (Init, ρR)

Then
Wn

i=1 post i (Init, ρR) =
W

i≥0 post i (Init, ρR)

37

Forward reachability analysis

Compute
Wn

i=1 post i (Init, ρR), n ≥ 0.

If there exists m ∈ N such that

n_

i=1

post i (Init, ρR) =

n+1_

i=1

post i (Init, ρR)

then fixpoint reached.

Let φreach :=
Wn

i=1 post i (Init, ρR)

If φreach ∩ φerr = ∅ then safety is guaranteed.

38

Backward reachability analysis

Another possibility: Start from a bad state and compute states from which

the bad state can be reached.

If the initial states are not among these states then safety is guaranteed.

39

Pre operator

Let φ be a formula over V

Let ρ be a formula over V and V ′

Define a pre-condition function pre by:

pre(φ, ρ) =
E

V ′ : ρ ∧ φ[V ′/V]

An application pre(φ, ρ) computes the preimage of the set φ under the

relation ρ.

Computation of pre
n similar.

40

Problems

It is not guaranteed that the fixpoint is reached in a finite/bounded number

of steps.

41

Problems

It is not guaranteed that the fixpoint is reached in a finite/bounded number

of steps.

Need to analyze alternative solutions

42

Verification

Modeling/Formalization

Invariant checking/ BMC Model Checking Abstraction/ Refinement

System Specification

Is the system safe?

Can we generate an invariant which implies safety?
Is the safety property an invariant of the system?

of length < n which start in an initial state?
Is safety guaranteed on all paths

43

Verification

Modeling/Formalization

Automated reasoning

− full theory

− abstraction of theory

Interpolation

− use interpolants
 for refining abstraction

Invariant checking/ BMC Model Checking Abstraction/ Refinement

System Specifications

Complex theories

44

Invariant checking; Bounded model checking

S specification 7→ ΣS signature of S ; TS theory of S ; TS transition system

Init(x); ρR(x , x ′)

Given: Safe(x) formula (e.g. safety property)

• Invariant checking

(1) |=TS
Init(x) → Safe(x) (Safe holds in the initial state)

(2) |=TS
Safe(x)∧ρR(x , x ′)→Safe(x ′) (Safe holds before ⇒ holds after update)

• Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps,
i.e. for all 0 ≤ j ≤ k:

Init(x0) ∧ ρR(x0, x1) ∧ · · · ∧ ρR(xj−1, xj) ∧ ¬Safe(xj) |=TS
⊥

45

Reasoning modulo theories

Goal: Devise efficient methods for reasoning modulo theories

46

Problems

− First order logic is undecidable

− In applications, theories do not occur alone

7→ need to consider combinations of theories

+ Fragments of theories occurring in applications are often decidable

+ Often provers for the component theories can be combined efficiently

47

Probleme

− First order logic is undecidable

− In applications, theories do not occur alone

7→ need to consider combinations of theories

+ Fragments of theories occurring in applications are often decidable

+ Often provers for the component theories can be combined efficiently

Important goals:

• Identify decidable theories which are important in applications
(Extensions/Combinations) possibly with low complexity

• Development & Implementation of efficient Decision Procedures

48

Reasoning modulo theories

Goal: Devise efficient methods for reasoning modulo theories

SAT checking (can reduce entailment to checking satisfiability)

Example:

Check whether conjunctions of constraints in linear arithmetic is satisfiable:

classical methods exist, e.g. simplex.

Check whether a conjunction of equalities and disequalities of ground terms

is satisfiable: methods exist (e.g. congruence closure)

Challenge: efficient methods for handling arbitrary Boolean combinations of

constraints in such theories.

Possible solution: Extend the DPLL method to reasoning modulo theories.

49

Reminder: The DPLL algorithm

State: M || F ,

where:

- M partial assignment (sequence of literals),

some literals are annotated (Ld : decision literal)

- F clause set.

50

A succinct formulation

UnitPropagation

M || F ,C ∨ L ⇒ M, L || F , C ∨ L if M |= ¬C , and L undef. in M

Decide

M || F ⇒ M, Ld || F if L or ¬L occurs in F , L undef. in M

Fail

M || F ,C ⇒ Fail if M |= ¬C , M contains no decision literals

Backjump

M, Ld ,N || F ⇒ M, L′ || F if

8
>>>>><

>>>>>:

there is some clause C ∨ L′ s.t.:

F |= C ∨ L′ ,M |= ¬C ,

L′ undefined in M

L′ or ¬L′ occurs in F .

51

SAT Modulo Theories (SMT)

Some problems are more naturally expressed in richer logics than just

propositional logic, e.g:

• Software/Hardware verification needs reasoning about equality,

arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a ground 1st-order formula

with respect to a background theory T

52

SAT Modulo Theories (SMT)

The “very eager” approach to SMT

Method:

– translate problem into equisatisfiable propositional formula;

– use off-the-shelf SAT solver

• Why “eager”?

Search uses all theory information from the beginning

• Characteristics:

+ Can use best available SAT solver

− Sophisticated encodings are needed for each theory

− Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

- DPLL-based techniques for handling the boolean structure

- Efficient theory solvers for conjunctions of T -literals

53

SAT Modulo Theories (SMT)

“Lazy” approaches to SMT: Idea

Example: consider T = UIF and the following set of clauses:

f (g(a)) 6≈ f (c)
| {z }

¬P1

∨ g(a) ≈ d
| {z }

P2

, g(a) ≈ c
| {z }

P3

, c 6≈ d
| {z }

¬P4

1. Send {¬P1∨P2, P3, ¬P4} to SAT solver

SAT solver returns model [¬P1,P3,¬P4]

Theory solver says ¬P1 ∧ P3 ∧ ¬P4 is T -inconsistent

2. Send {¬P1∨P2, P3, ¬P4, P1∨¬P3∨P4} to SAT solver

SAT solver returns model [P1,P2,P3,¬P4]

Theory solver says P1 ∧ P2 ∧ P3 ∧ ¬P4 is T -inconsistent

3. Send {¬P1∨P2,P3,¬P4,P1∨¬P3∨P4,¬P1∨¬P2∨¬P3∨P4} to SAT solver

SAT solver says UNSAT

54

Other interesting topics

• Generate invariants

• Verification by abstraction/refinement

55

Abstraction-based Verification

Abstract program

feasible path

location reachable

Concrete program

feasible path

location unreachable location unreachable

check feasibility

⇓

conjunction of constraints: Init(x1)∧ ρR(x1, x2)∧ · · · ∧ ρR(xn−1, xn)∧¬safe(xn)

- satisfiable: feasible path

- unsatisfiable: refine abstract program s.t. the path is not feasible

[McMillan 2003-2006] use ‘local causes of inconsistency’

7→ compute interpolants

56

Overview

• Basic notions

– Propositional logic (Methods for checking validity, satisfiability, entailment:

Inference Systems, The Resolution Procedure, Sequent calculi, DPLL,

BDDs, OBDDs)

– First-order logic (Syntax, semantics, Logical theories, Herbrand models,

term algebras, free algebras)

• Specification

– Algebraic specification; Transition systems; Program graph representation

• Verification

– LTL, CTL, Model checking

– Propositional dynamic logic

– Deductive verification: An introduction

57

