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Mathematical foundations

Formal logic:

• Syntax: a formal language (formula expressing facts)

• Semantics: to define the meaning of the language, that is which facts

are valid)

• Deductive system: made of axioms and inference rules to formaly

derive theorems, that is facts that are provable
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Last time

Propositional classical logic

• Syntax

• Semantics

Models, Validity, and Satisfiability; Entailment and Equivalence

• Checking Unsatisfiability

Truth tables

”Rewriting” using equivalences

Proof systems: clausal/non-clausal

- non-clausal: Hilbert calculus

sequent calculus

- clausal: Resolution; DPLL (translation to CNF needed)

- Binary Decision Diagrams
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Limitations of Propositional Logic

• Fixed, finite number of objects

Cannot express: let G be group with arbitrary number of elements

• No functions or relations with arguments

Can express: finite function/relation table pij

Cannot express: properties of function/relation on all arguments,

e.g., + is associative

• Static interpretation

Programs change value of their variables, e.g., via assignment, call,

etc.

Propositional formulas look at one single interpretation at a time
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Beyond the Limitations of Propositional Logic

• First order logic

(+ functions)

• Temporal logic

(+ computations)

• Dynamic logic

(+ computations + functions)
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Part 2: First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive

(e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.
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2.1 Syntax

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols (domain-independent)

⇒ Boolean combinations, quantifiers
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Signature

A signature

Σ = (Ω,Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0,

written f /n,

• Π is a set of predicate symbols p with arity m ≥ 0,

written p/m.

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

We use letters P, Q, R, S , to denote propositional variables.
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Signature

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in programming

languages).

Most results established for one-sorted signatures extend in a natural way

to many-sorted signatures.
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Many-sorted Signature

A many-sorted signature

Σ = (S , Ω,Π),

fixes an alphabet of non-logical symbols, where

• S is a set of sorts,

• Ω is a set of function symbols f with arity a(f ) = s1 . . . sn → s,

• Π is a set of predicate symbols p with arity a(p) = s1 . . . sm

where s1, . . . , sn, sm, s are sorts.
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Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.
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Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.

Many-sorted case:

We assume that for every sort s ∈ S , Xs is a given countably infinite set of

symbols which we use for (the denotation of) variables of sort s.
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Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (t1, ..., tn) , f /n ∈ Ω (functional term)

By TΣ(X ) we denote the set of Σ-terms (over X ).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.
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Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (t1, ..., tn) , f /n ∈ Ω (functional term)

By TΣ(X ) we denote the set of Σ-terms (over X ).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

Many-sorted case:

a variable x ∈ Xs is a term of sort s

if a(f ) = s1 . . . sn → s, and ti are terms of sort si , i = 1, . . . , n then

f (t1, ..., tn) is a term of sort s.
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Terms

In other words, terms are formal expressions with well-balanced brackets

which we may also view as marked, ordered trees.

The markings are function symbols or variables.

The nodes correspond to the subterms of the term.

A node v that is marked with a function symbol f of arity n has exactly n

subtrees representing the n immediate subterms of v .
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Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
h

| (t ≈ t′) (equation)
i

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.
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Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
h

| (t ≈ t′) (equation)
i

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.

Many-sorted case:

If a(p) = s1 . . . sm, we require that ti is a term of sort si for i = 1, . . . ,m.
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Literals

L ::= A (positive literal)

| ¬A (negative literal)
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Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)
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General First-Order Formulas

FΣ(X ) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

|

A

xF (universal quantification)

|

E

xF (existential quantification)
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Notational Conventions

We omit brackets according to the following rules:

• ¬ >p ∧ >p ∨ >p → >p ↔

(binding precedences)

• ∨ and ∧ are associative and commutative

• → is right-associative

Qx1, . . . , xn F abbreviates Qx1 . . . Qxn F .
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Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator

precedences.

Examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u),+(t, v))

−s for −(s)

0 for 0()
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Example: Peano Arithmetic

Signature:

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

A

x , y(x ≤ y ↔

E

z(x + z ≈ y))

E

x

A

y(x + y ≈ y)

A

x , y(x ∗ s(y) ≈ x ∗ y + x)

A

x , y(s(x) ≈ s(y) → x ≈ y)

A

x

E

y(x < y ∧ ¬

E

z(x < z ∧ z < y))
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Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can

be defined in first-order logic with equality just with the help of +. The

first formula defines ≤, while the second defines zero. The last formula,

respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below)

reintroduces the “redundant” symbols.

Consequently there is a trade-off between the complexity of the

quantification structure and the complexity of the signature.
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Example: Specifying LISP lists

Signature:

ΣLists = (ΩLists, ΠLists)

ΩLists = {car/1, cdr/1, cons/2}

ΠLists = ∅

Examples of formulae:

A

x , y car(cons(x , y)) ≈ x

A

x , y cdr(cons(x , y)) ≈ y

A

x cons(car(x), cdr(x)) ≈ x
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Many-sorted signatures

Example:

Signature

S = {array, index, element} set of sorts

Ω = {read, write}

a(read) = array × index → element

a(write) = array × index × element → array

Π = ∅

X = {Xs | s ∈ S}

Examples of formulae:

A

x : array

A

i : index

A

j : index (i ≈ j → write(x , i , read(x , j)) ≈ x)

A

x : array

A

y : array (x ≈ y ↔

A

i : index (read(x , i) ≈ read(y , i)))
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Bound and Free Variables

In QxF , Q ∈ {

E

,

A

}, we call F the scope of the quantifier Qx .

An occurrence of a variable x is called bound, if it is inside the scope of a

quantifier Qx .

Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential

forms.

Formulas without variables are called ground.
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Bound and Free Variables

Example:

A

scope
z }| {

y (

A

scope
z }| {

x p(x) → q(x, y))

The occurrence of y is bound, as is the first occurrence of x . The second

occurrence of x is a free occurrence.
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Substitutions

Substitution is a fundamental operation on terms and formulas that occurs

in all inference systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X )

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by

codom(σ).
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Substitutions

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi

pairwise distinct, and then denote the mapping

[s1/x1, . . . , sn/xn](y) =







si , if y = xi

y , otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =







t, if y = x

σ(y), otherwise

30



Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by

structural induction over the syntactic structure of t or F by the equations

depicted on the next page.

In the presence of quantification it is surprisingly complex:

We need to make sure that the (free) variables in the codomain of σ are not

captured upon placing them into the scope of a quantifier Qy , hence the

bound variable must be renamed into a “fresh”, that is, previously unused,

variable z.
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Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρ Gσ) ; for each binary connective ρ

(Qx F )σ = Qz (F σ[x 7→ z]) ; with z a fresh variable
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2.2 Semantics

To give semantics to a logical system means to define a notion of truth for

the formulas. The concept of truth that we will now define for first-order

logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values

“true” and “false” denoted by 1 and 0, respectively.
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Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra and

its universe.

By Σ − Alg we denote the class of all Σ-algebras.
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Many-sorted Structures

A many-sorted Σ-algebra (also called Σ-interpretation or Σ-structure),

where Σ = (S , Ω,Π) is a triple

A=({Us}s∈S , (fA:Us1×. . .×Usn→Us ) f∈Ω,
a(f )=s1...sn→s

(pA:Us1× . . .×Usm→{0, 1}) p∈Π
a(p)=s1...sm

)

where U 6= ∅ is a set, called the universe of A.
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Assignments

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A),

is a map β : X → A.
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Assignments

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A),

is a map β : X → A.

Many-sorted case:

β = {βs}s∈S , βs : Xs → Us
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Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X ) → A

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f /n ∈ Ω
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Value of a Term in A with Respect to β

In the scope of a quantifier we need to evaluate terms with respect to

modified assignments. To that end, let β[x 7→ a] : X → A, for x ∈ X and

a ∈ A, denote the assignment

β[x 7→ a](y) :=

8
<

:

a if x = y

β(y) otherwise

39



Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X ) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(p(s1, . . . , sn)) = pA(A(β)(s1), . . . ,A(β)(sn))

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F ) = 1 ⇔ A(β)(F ) = 0

A(β)(FρG ) = Bρ(A(β)(F ),A(β)(G ))

with Bρ the Boolean function associated with ρ

A(β)(

A

xF ) = min
a∈U

{A(β[x 7→ a])(F )}

A(β)(

E

xF ) = max
a∈U

{A(β[x 7→ a])(F )}
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Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : UN → UN sN(n) = n + 1

+N : U2
N
→ UN +N(n,m) = n + m

∗N : U2
N
→ UN ∗N(n,m) = n ∗ m

≤N: U2
N
→ {0, 1} ≤N (n,m) = 1 iff n less than or equal to m

<N: U2
N
→ {0, 1} ≤N (n,m) = 1 iff n less than m

Note that N is just one out of many possible ΣPA-interpretations.
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Example

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(
A

x , y(x + y ≈ y + x)) = 1

N(β)(

A

z z ≤ y) = 0

N(β)(

A

x

E

y x < y) = 1
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2.3 Models, Validity, and Satisfiability

F is valid in A under assignment β:

A, β |= F :⇔ A(β)(F ) = 1

F is valid in A (A is a model of F ):

A |= F :⇔ A, β |= F , for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A, β |= F .

Otherwise F is called unsatisfiable.
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Entailment and Equivalence

F entails (implies) G (or G is a consequence of F ), written

F |= G

:⇔ for all A ∈ Σ-alg and β ∈ X → UA,

whenever A,β |= F then A,β |= G .

F and G are called equivalent

:⇔ for all A ∈ Σ-alg und β ∈ X → UA we have

A,β |= F ⇔ A,β |= G .
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Entailment and Equivalence

Proposition 2.6:

F entails G iff (F → G) is valid

Proposition 2.7:

F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N |= F

:⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A, β |= G , for all G ∈ N, then A, β |= F .
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained

by the following proposition.

Proposition 2.8:

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient

to design a checker for unsatisfiability.

Q: In a similar way, entailment N |= F can be reduced to unsatisfiability.

How?
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