
Formal Specification and Verification

– First-order logic; Logical Theories (Part 2)

– Formal specification (generalities)

– Algebraic specification

22.05.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Mathematical foundations

Formal logic:

• Syntax: a formal language (formula expressing facts)

• Semantics: to define the meaning of the language, that is which facts

are valid)

• Deductive system: made of axioms and inference rules to formaly

derive theorems, that is facts that are provable

2

Last time

Propositional classical logic

• Syntax

• Semantics

Models, Validity, and Satisfiability; Entailment and Equivalence

• Checking Unsatisfiability

Truth tables

”Rewriting” using equivalences

Proof systems: clausal/non-clausal

- non-clausal: Hilbert calculus

sequent calculus

- clausal: Resolution; DPLL (translation to CNF needed)

- Binary Decision Diagrams

3

Limitations of Propositional Logic

• Fixed, finite number of objects

Cannot express: let G be group with arbitrary number of elements

• No functions or relations with arguments

Can express: finite function/relation table pij

Cannot express: properties of function/relation on all arguments,

e.g., + is associative

• Static interpretation

Programs change value of their variables, e.g., via assignment, call,

etc.

Propositional formulas look at one single interpretation at a time

4

Beyond the Limitations of Propositional Logic

• First order logic

(+ functions)

• Temporal logic

(+ computations)

• Dynamic logic

(+ computations + functions)

5

Last time

→First-order logic

• Syntax (signature, terms, formulae, substitutions)

• Semantics (Σ-algebras (structures); assignments; value of a term;

truth value of a formula)

• Models, Validity, and Satisfiability

• Entailment and Equivalence

6

Models, Validity, and Satisfiability

F is valid in A under assignment β:

A, β |= F :⇔ A(β)(F) = 1

F is valid in A (A is a model of F):

A |= F :⇔ A, β |= F , for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A, β |= F .

Otherwise F is called unsatisfiable.

7

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written

F |= G

:⇔ for all A ∈ Σ-alg and β ∈ X → UA,

whenever A,β |= F then A,β |= G .

F and G are called equivalent

:⇔ for all A ∈ Σ-alg und β ∈ X → UA we have

A,β |= F ⇔ A,β |= G .

8

Entailment and Equivalence

Proposition 2.6:

F entails G iff (F → G) is valid

Proposition 2.7:

F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N |= F

:⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A, β |= G , for all G ∈ N, then A, β |= F .

9

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained

by the following proposition.

Proposition 2.8:

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient

to design a checker for unsatisfiability.

Q: In a similar way, entailment N |= F can be reduced to unsatisfiability.

How?

10

Theory of a Structure

Let A ∈ Σ-alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X) | A |= G}

Problem of axiomatizability:

For which structures A can one axiomatize Th(A), that is, can one write

down a formula F (or a recursively enumerable set F of formulas) such that

Th(A) = {G | F |= G}?

Analogously for sets of structures.

11

Two Interesting Theories

Let ΣPres = ({0/0, s/1,+/2}, ∅) and Z+ = (Z, 0, s, +) its standard

interpretation on the integers.

Th(Z+) is called Presburger arithmetic (M. Presburger, 1929).

(There is no essential difference when one, instead of Z, considers the

natural numbers N as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS,

16(3):323–332, 1978), and in 2EXPSPACE, using automata-theoretic

methods (and there is a constant c ≥ 0 such that Th(Z+) 6∈ NTIME(22cn
)).

12

Two Interesting Theories

However, N∗ = (N, 0, s, +, ∗), the standard interpretation of

ΣPA = ({0/0, s/1,+/2, ∗/2}, ∅), has as theory the so-called

Peano arithmetic which is undecidable, not even recursively

enumerable.

Note: The choice of signature can make a big difference with

regard to the computational complexity of theories.

13

Logical theories

Syntactic view

first-order theory: given by a set F of (closed) first-order Σ-formulae.

the models of F : Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view

given a class M of Σ-algebras

the first-order theory of M: Th(M) = {G ∈ FΣ(X) closed | M |= G}

14

Theories

F set of (closed) first-order formulae

Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

M class of Σ-algebras

Th(M) = {G ∈ FΣ(X) closed | M |= G}

Th(Mod(F)) the set of formulae true in all models of F

represents exactly the set of consequences of F

15

Theories

F set of (closed) first-order formulae

Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

M class of Σ-algebras

Th(M) = {G ∈ FΣ(X) closed | M |= G}

Th(Mod(F)) the set of formulae true in all models of F

represents exactly the set of consequences of F

Note: F ⊆ Th(Mod(F)) (typically strict)

M ⊆ Mod(Th(M)) (typically strict)

16

Examples

1. Groups

Let Σ = ({e/0, ∗/2, i/1}, ∅)

Let F consist of all (universally quantified) group axioms:

A

x , y , z x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z
A

x x ∗ i(x) ≈ e ∧ i(x) ∗ x ≈ e

A

x x ∗ e ≈ x ∧ e ∗ x ≈ x

Every group G = (G , eG , ∗G , iG) is a model of F

Mod(F) is the class of all groups

F ⊂ Th(Mod(F))

17

Examples

2. Linear (positive)integer arithmetic

Let Σ = ({0/0, s/1, +/2}, {≤ /2})

Let Z+ = (Z, 0, s, +,≤) the standard interpretation of integers.

{Z+} ⊂ Mod(Th(Z+))

3. Uninterpreted function symbols

Let Σ = (Ω, Π) be arbitrary

Let M = Σ-alg be the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family

of all first-order formulae which are true in all Σ-algebras.

18

Examples

4. Lists

Let Σ = ({car/1, cdr/1, cons/2}, ∅)

Let F be the following set of list axioms:

car(cons(x , y)) ≈ x

cdr(cons(x , y)) ≈ y

cons(car(x), cdr(x)) ≈ x

Mod(F) class of all models of F

ThLists = Th(Mod(F)) theory of lists (axiomatized by F)

19

“Most general” models

We assume that Π = ∅.

Term algebras

A term algebra (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

f

fA(△, . . . ,△) =

△ . . . △

20

Term algebras

In other words, values are fixed to be ground terms and functions

are fixed to be the term constructors.

21

Free algebras

Let K be the class of Σ-algebras which satisfy a set of axioms which are

either equalities

A

x : t(x) ≈ s(x)

or implications:

A

x : t1(x) ≈ s1(x) ∧ · · · ∧ tn(x) ≈ sn(x) → t(x) ≈ s(x)

We can construct the “most general” model in K:

• Step 1: Construct the term algebra TΣ(X) (resp. TΣ)

22

Free algebras

Let K be the class of Σ-algebras which satisfy a set F of axioms which are

either equalities

A

x : t(x) ≈ s(x)

or implications:

A

x : t1(x) ≈ s1(x) ∧ · · · ∧ tn(x) ≈ sn(x) → t(x) ≈ s(x)

We can construct the “most general” model in K:

• Step 2: Identify all terms t, t′ such that K |= t ≈ t′

(all terms which become equal as a consequence of the axioms).

t ∼ t′ iff K |= t ≈ t′

iff F |= t ≈ t′ because we assumed that K = Mod(F)

• ∼ congruence relation: it clearly is an equivalence relation. Also:

If f /n ∈ Ω and t1 ∼ t′

1, . . . , tn ∼ t′

n then f (t1, . . . , tn) ∼ f (t′

1, . . . , f
′

n).

23

Free algebras

Let K be the class of Σ-algebras which satisfy a set F of axioms which are

either equalities

A

x : t(x) ≈ s(x)

or implications:

A

x : t1(x) ≈ s1(x) ∧ · · · ∧ tn(x) ≈ sn(x) → t(x) ≈ s(x)

We can construct the “most general” model in K:

• Step 3: Construct the Σ-algebra of equivalence classes:

TΣ(X)/ ∼ resp. TΣ/ ∼.

Universe: U = {[t] | t ∈ TΣ(X)} where [t] = {t′ ∈ TΣ(X) | t ∼ t′}

(similar construction for TΣ)

Operations: f ([t1], . . . , [tn]) := [f (t1, . . . , tn)]

Since ∼ is a congruence, definition is independent on the choice of the

representatives for the equivalence classes.

24

Free algebras

Let K be the class of Σ-algebras which satisfy a set F of axioms which are

either equalities

A

x : t(x) ≈ s(x)

or implications:

A

x : t1(x) ≈ s1(x) ∧ · · · ∧ tn(x) ≈ sn(x) → t(x) ≈ s(x)

We can construct the “most general” model in K:

• TΣ(X)/ ∼ is the free algebra in K freely generated by X .

TΣ/ ∼ is the free algebra (with no generators) in K.

25

Universal property of the free algebras

For every A ∈ K and every β : X → A there exists a unique extension β′

of β which is an algebra homomorphism:

β′ : TΣ(X)/ ∼→ A

For every A ∈ K there exists a unique algebra homomorphism:

β′ : TΣ → A

26

Examples

Example 1: TΣ(X) is the free algebra freely generated by X for the class of

all algebras of type Σ.

Example 2: Let X be a set of symbols and X∗ be the class of all finite

strings of elements in X , including the empty string.

We construct the monoid (X∗, ·, 1) by defining · to be concatenation, and

1 is the empty string.

(X∗, ·, 1) is the free monoid freely generated by X .

27

Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.

28

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

• Specification languages for properties of programs/processes/systems

29

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE

• Specification languages for properties of programs/processes/systems

Temporal logic

30

Algebraic specification

• appropriate for specifying the interface of a module or class

• enables verification of implementation w.r.t. specification

• for every ADT operation: argument and result types (sorts)

• semantic equations over operations (axioms) e.g. for every combination

of “defined function” (e.g. top, pop) and constructor with the

corresponding sort (e.g. push, empty)

• problem: consistency?, completeness?

31

Example: Algebraic specification

32

Example: Algebraic specification

reduce pop(push(X,S)) == S .

reduce top(pop(push(X,push(Y,S)))) == Y .

reduce S == push(X,S2) implies push(top(S),pop(S)) == S .

reduce S == push(X,S2) implies length(pop(S)) + 1 == length(S) .

• the equations can be used as term rewriting rules

• this allows proving properties of the specification

33

Syntax of Algebraic Specifications

Signatures: as in FOL (S , Ω, Π)

Example:

STACK = ({Stack,Nat},

{empty : ǫ → Stack,

push : Nat × Stack → Stack,

pop : Stack → Stack,

top : Stack → Nat,

length : Stack → Nat,

0 : ǫ → Nat, 1 : ǫ → Nat

}

34

Semantics of Algebraic Specifications

Σ-algebras

Observations

• different Σ-algebras are not necessarily “equivalent”

• we seek the most “abstract” Σ-algebra,

since it anticipates as little implementation decisions as possible

35

Semantics of Algebraic Specifications

Σ-algebras

Observations

• different Σ-algebras are not necessarily “equivalent”

• we seek the most “abstract” Σ-algebra,

since it anticipates as little implementation decisions as possible

No equations: Term algebras

Axioms Ax – Equations/Horn clauses: Free algebras

TΣ/ ∼, where

t ∼ t′ iff

Ax |= t ≈ t′ iff

For every A ∈ Mod(Ax), A |= t ≈ t′

36

Algebraic Specification

“A gentle introduction to CASL”

M. Bidoit and P. Mosses

http://www.lsv.ens-cachan.fr/∼bidoit/GENTLE.pdf

In the lecture I sshowed the following pages:

pages 15-26

pages 27-45

pages 66-72

37

