
Formal Specification and Verification

– Formal specification

– Temporal logic

12.06.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1



Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.

2



Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, timed automata last time

Axiom-based specification

algebraic specification last time

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

• Specification languages for properties of programs/processes/systems

Temporal logic

3



More complex specifications and specification

languages

• Languages for describing various processes

• Languages based on Set theory (OZ, B)

• Languages for describing durations

• Complex languages

4



CSP

Communicating Sequential Processes, or CSP, is a language for describing

processes and patterns of interaction between them.

It is supported by an elegant, mathematical theory, a set of proof tools, and

an extensive literature.

5



CSP

Communicating Sequential Processes, or CSP, is a language for describing

processes and patterns of interaction between them.

It is supported by an elegant, mathematical theory, a set of proof tools, and

an extensive literature.

• Each process: transition system

• Operations on processes: sequential, parallel composition

efects on states

6



CSP

General idea:

Given:

• Set of event names

• Process: behaviour pattern of an object (insofar as it can be described

in terms of the limited set of events selected as its alphabet)

7



CSP

Example:

Events: insert-coin, get-sprite, get-beer

8



CSP

Prefix:

P = a → Q (a then Q)

where a is an event and Q a process

After event a, process P behaves like process Q

9



CSP: Example

A simple vending machine which consumes one coin before breaking

(insert-coin → STOP)

10



CSP: Example

A simple vending machine that successfully serves two customers before

breaking

(insert-coint → (get-sprite → (insert-coin → (get-beer → STOP))))

11



CSP

Example: (recursive definitions)

Consider the simplest possible everlasting object, a clock which never does

anything but tick (the act of winding is deliberately ignored)

Events(CLOCK) = {tick}

Consider next an object that behaves exactly like the clock, except that it

first emits a single tick

(tick → CLOCK)

The behaviour of this object is indistinguishable from that of the original

clock. This reasoning leads to formulation of the equation

CLOCK = (tick → CLOCK)

This can be regarded as an implicit definition of the behaviour of the clock.

11



Modular Specifications: CSP-OZ-DC (COD)

COD [Hoenicke,Olderog’02] allows us to specify in a modular way:

• the control flow of a system
using Communicating Sequential Processes (CSP)

• the state space and its change
using Object-Z (OZ)

• (dense) real-time constraints over durations of events
using the Duration Calculus (DC)

12



Example: Controller for line track (RBC)

|
{
z

}

In
te

rf
a
ce

|
{
z

}

C
S
P

p
ar

t

|
{
z

}

D
a
ta

cl
a
ss

es

|
{
z

}

S
ta

te
a
n
d

In
it

sc
h
em

a

{
z

}

U
p
d
a
te

ru
le

s

RBC

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc , req, updPos, updSpd

main
c
= ((enter → main)

2 (leave → main)

2 (updSpd → State1))

State1
c
= ((enter → State1)

2 (leave → State1)

2 (req → State2))

State2
c
= ((alloc → State3)

2 (enter → State2)

2 (leave → State2))

State3
c
= ((enter → State3)

2 (leave → State3)

2 (updPos → main))
SegmentData

train : Segment → Train [Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z [Allocated by train]

TrainData

segm : Train → Segment [Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

sd : SegmentData

td : TrainData

A

t : TrainΓtid(t) > 0

A

t1, t2 : Train | t1 6= t2Γtid(t1) 6= tid(t2)

A

s : SegmentΓprevs(nexts(s)) = s

A

s : SegmentΓnexts(prevs(s)) = s

A

s : SegmentΓsid(s) > 0

A

s : SegmentΓsid(nexts(s)) > sid(s)

A

s1, s2 : Segment | s1 6= s2Γsid(s1) 6= sid(s2)

A

s : Segment | s 6= snilΓlength(s) > d + gmax · ∆t

A

s : Segment | s 6= snilΓ0 < lmax(s) ∧ lmax(s) ≤ gmax

A

s : SegmentΓlmax(s) ≥ lmax(prevs(s)) − decmax · ∆t

A

s1, s2 : SegmentΓtid(incoming(s1)) 6= tid(train(s2))

Init

A

t : TrainΓtrain(segm(t)) = t

A

t : TrainΓnext(prev(t)) = t

A

t : TrainΓprev(next(t)) = t

A

t : TrainΓ0 ≤ pos(t) ≤ length(segm(t))

A

t : TrainΓ0 ≤ spd(t) ≤ lmax(segm(t))

A

t : TrainΓalloc(segm(t)) = tid(t)

A

t : TrainΓalloc(nexts(segm(t))) = tid(t)
∨ length(segm(t)) − bd(spd(t)) > pos(t)

A

s : SegmentΓsegm(train(s)) = s

effect updSpd

∆(spd)

A

t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

.

.

.

CSP

OZ

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

13



Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

• updSpd (speed update)

• req (request update)

• alloc (allocation update)

• updPos (position update)

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

Between these events, trains may leave or enter the track (at specific

segments), modeled by the events leave and enter.

14



Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events

with corresponding COD schemata:

CSP: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc, req, updPos, updSpd

main
c
=((updSpd→State1) State1

c
=((req→State2) State2

c
=((alloc→State3) State3

c
=((updPos→main)

2(leave→main) 2(leave→State1) 2(leave→State2) 2(leave→State3)

2(enter→main)) 2(enter→State1)) 2(enter→State2)) 2(enter→State3))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

16



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system

Data structures:

train: trains
• 2-sorted pointers

segm: segments

SegmentData
train : Segment → Train

[Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z

[Allocated by train]

TrainData
segm : Train → Segment

[Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

9



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system, and are used in the OZ part of the

specification.

• 2. Axioms: define properties of the data structures and system

parameters which do not change

• gmax : R (the global maximum speed),

• decmax : R (the maximum deceleration of trains),

• d : R (a safety distance between trains),

• Properties of the data structures used to model trains/segments

10



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 3. Init schema. describes the initial state of the system.

• trains - doubly-linked list; placed correctly on the track segments

• all trains respect their speed limits.

• 4. Update rules specify updates of the state space executed when the

corresponding event from the CSP part is performed.

Example: Speed update
effect updSpd

∆(spd)

A

t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

10



Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.

11


