
Formal Specification and Verification

Temporal logic, part 2

19.06.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Temporal logic

Which flow of time should we use?

This depends on the application!

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Finite-state systems.

Finite-state systems can only take finitely many states.

(Often, infinite-state systems can be abstracted into finite-state ones

by grouping the states into a finite number of partitions.)

2

Models of time

Which flow of time should we use?

This depends on the application!

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Reactive Systems.

A reactive system interacts with the environment frequently and usually

does not terminate. Its correctness is defined via these interactions.

This is in contrast to a classical algorithm that takes an input initially

and then eventually terminates producing a result.

3

Models of time

Which flow of time should we use?

This depends on the application!

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Concurrent Systems.

Systems consisting of multiple, interacting processes. One process does

not know about the internal state of the others. May be viewed as a

collection of reactive systems.

4

Linear Time Logic

Syntax

Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

• each propositional letter P ∈ Π is a formula;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are ©F and FUG

Remark: Instead of ©F in some books also XF is used.

5

Linear Time Logic

Semantics

• Transition systems (S ,→, L)

(with the property that for every s ∈ S there exists s′ ∈ S with s → s′

i.e. no state of the system can “deadlock”a)

Transition systems are also simply called models in what follows.

• Computation (execution, path) in a model (S ,→, L)

infinite sequence of states π = s0, s1, s2, ... in S such that for each

i ≥ 0, si → si+1.

We write the path as s0 → s1 → s2 →
aThis is a technical convenience, and in fact it does not represent any

real restriction on the systems we can model. If a system did deadlock, we

could always add an extra state sd representing deadlock, together with new

transitions s → sd for each s which was a deadlock in the old system, as

well as sd → sd .

6

Linear Time Logic

Semantics

Let TS = (S ,→, L) be a model and π = s0 → ... be a path in TS (π

represents a possible future of our system)

Whether π satisfies an LTL formula is defined by the satisfaction relation

|= as follows:

• π |= ⊤

• π 6|=⊥

• π |= p iff p ∈ L(s0), if p ∈ Π

• π |= ¬F iff π 6|= F

• π |= F ∧ G iff π |= F and π |= G

• π |= F ∨ G iff π |= F or π |= G

• π |= ©F iff π1 |= F

• π |= FUG iff

E

m ≥ 0 s.t. πm |= G and

A

k ∈ {0, . . . ,m − 1} : πk |= F

7

Linear Time Logic

Alternative way of defining the semantics:

An LTL structure M is an infinite sequence S0S1 . . . with Si ⊆ Π for all

i ≥ 0. We define satisfaction of LTL formulas in M at time points n ∈ N as

follows:

• M, n |= p iff p ∈ Sn, if p ∈ Π

• M, n |= F ∧ G iff M, n |= F and M, n |= G

• M, n |= F ∨ G iff M, n |= F or M, n |= G

• M, n |= ¬F iff M, n 6|= F

• M, n |= ©F iff M, n + 1 |= F

• M, n |= FUG iff

E

m ≥ n s.t. M, m |= G and

A

k ∈ {n, . . . ,m − 1} : M, k |= F

Note that the time flow (N,<) is implicit.

8

Abbreviations

• The future diamond

3φ := ⊤Uφ Sometimes denoted also Fφ

π |= 3φ iff

E

m ≥ 0 : πm |= φ M, n |= 3φ iff

E

m ≥ n : M, m |= φ

• The future box

2φ := ¬3¬φ Sometimes also denoted Gφ

π |= 2φ iff

A

m≥0 : πm |= φ M, n |= 2φ iff

A

m≥n : M, m |= φ

• The infinitely often operator

3
∞φ := 23φ

π |= 3
∞φ iff {m ≥ 0 | πm |= φ} is infinite

M, n |= 3
∞φ iff {m ≥ n | M, m |= φ} is infinite

• The almost everywhere operator

2
∞φ := 32φ

π |= 2
∞φ iff {m ≥ 0 | πm 6|= φ} is finite.

M, n |= 2
∞φ iff {m ≥ n | M, m 6|= φ} is finite.

9

Abbreviations

• The release operator

φRψ := ¬(¬φU¬ψ)

π |= φRψ iff (

E

m ≥ 0 : πm |= φ and

A

k ≤ m: πk |= ψ) or

(

A

k ≥ 0 : πk |= ψ)

M, n |= φRψ iff (

E

m ≥ n : M,m |= φ and

A

k ≤ m : M, m |= ψ) or

(

A

k ≥ m : M, k |= ψ)

Read as

“ψ always holds unless released by φ” i.e.,

“ψ holds permanently up to and including the first point where φ

holds (such an φ-point need not exist at all)”.

10

Abbreviations

• The strict until operator:

FU<G := ©(FUG)

M, n |= FU<G iff

E

m > n : M, m |= G ∧

A

k ∈ {n + 1, ...,m −

1},M, k |= F

The difference between standard and strict until is that strict until requires

G to happen in the strict future and that F needs not hold true of the

current point.

11

Another equivalent satisfaction relation

Definition. Let T = (S ,→, L) and s ∈ S .

We say that T , s |= φ if for every computation π in T starting at s we have

π |= φ.

12

Equivalence

We say that two LTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all transition systens T and paths π, we have π |= F iff π |= G .

Note that:

©F ≡⊥ U<F and

FUG ≡ G ∨ (F ∧©(FU<G))

Thus, an equally expressive version of LTL is obtained by using U< as the

only temporal operator.

This cannot be done with the standard until

13

Equivalence

Some useful equivalences (exercise: prove them):

¬© F ≡ ©¬F (self-duality of next)

33F ≡ 3F (idempotency of diamond)

©3F ≡ 3 © F (commutation of next with Diamond)

33
∞F ≡ 3

∞F ≡ 3
∞

3F (absorption of diamonds by ı̈nfinitely often“)

FUG ≡ ¬(¬FR¬G) (until and release are duals)

FUG ≡ G ∨ (F ∧©(FUG)) (unfolding of until)

FRG ≡ (F ∧ G) ∨ (G ∧©(FRG)) (unfolding of release)

14

Satisfiability

An LTL formula F is satisfiable if there exists a transition system M and a

path π such that π |= F .

Such a structure is called a model of F .

In verification, satisfiability can be used to detect contradictory properties,

i.e., properties that are satisfied by no computation of any reactive system.

Example: The following property is contradictory (unsatisfiable):

p ∧ 2(p → ©p) ∧ 3¬p

15

Satisfiability

LTL satisfiability can be decided using automata on infinite words

(Büchi automata).

16

Model checking

The LTL model checking problem is as follows: given a transition system

T = (S ,→,L) and an LTL formula F , check whether T |= F .

Recall: this is the case if all computations π of T satisfy π |= F .

Example:

The following transition system satisfies 2(q → ©©©p).

It does not satisfy 2(p → pUq).

q q
p

p

p

17

Branching Time Logic: CTL

When doing model checking, we effectively use LTL in a branching time

environment:

Every state in a transition system that has more than a single

successor gives rise to a “branching” in time.

This is reflected by the fact that usually, a transition system has more than

a single computation.

Branching time logics allow us to explicitly talk about such branches in

time.

18

CTL: Syntax

The class of computational tree logic (CTL) formulas is the smallest set

such that

• ⊤,⊥ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are

A © F and E © F ,

A(FUG) and E(FUG).

The symbols A and E are called path quantifiers.

19

Abbreviations

Apart from the Boolean abbreviations, we use:

A3F for A(⊤UF)

E3F for E(⊤UF)

A2F for ¬E3¬F

E2F for ¬A3¬F

Note that formulas such as E(2q ∧ 3p) are not CTL formulas.

20

CTL: Semantics

Let T = (S ,→,L) be a transition system. We define satisfaction of CTL

formulas in T at states s ∈ S as follows:

(T , s) |= p iff p ∈ L(s)

(T , s) |= ¬F iff (T , s) |= F is not the case

(T , s) |= F ∧ G iff (T , s) |= F and (T , s) |= G

(T , s) |= F ∨ G iff (T , s) |= F or (T , s) |= G

(T , s) |= E © F iff (T , t) |= F for some t ∈ S with s → t

(T , s) |= A © F iff (T , t) |= F for all t ∈ S with s → t

(T , s) |= A(FUG) iff for all computations π = s0s1 . . . of T with s0 = s,

there is an m ≥ 0 such that (T , sm) |= G and

(T , sk) |= F for all k < m

(T , s) |= E(FUG) iff there exists a computation π = s0s1 . . . of T with s0 = s,

such that there is an m ≥ 0 such that (T , sm) |= G and

(T , sk) |= F for all k < m

21

Example of formulae in CTL

• E3((A = 2) ∧ (B = 2))

It is possible to reach a state where both processes are in the critical

section.

• A2(enabled1 ∧ . . . enabledk)

freedom from deadlocks (a safety property);

• A2(req → A3grant)

every request will eventually be acknowledged (a liveness property);

• A2(A3enabledi)

process i is enabled infinitely often on every computation path

(unconditional fairness)

• A2(E3Restart)

from every state it is possible to get to a restart state

22

Equivalence

We say that two CTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all CTL structures T = (S ,→, L) and s ∈ S , we have

T , s |= F iff T , s |= G .

23

Equivalence

We say that two CTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all CTL structures T = (S ,→, L) and s ∈ S , we have

T , s |= F iff T , s |= G .

Examples:

¬A3F ≡ E2¬F

¬E3F ≡ A2¬F

¬A © F ≡ E ©¬F

A3F ≡ A[⊤UF]

E3F ≡ E [⊤UF]

24

CTL

Why is CTL called a tree logic?

Intuitively, it can talk about branching paths (which exists in a tree), but

not about joining path (which do not exist in a tree).

25

CTL∗

CTL∗ is a logic which combines the expressive powers of LTL and CTL, by

dropping the CTL constraint that every temporal operator (©,U , 2,3) has

to be associated with a unique path quantifier (A,E).

26

CTL vs LTL

We want to compare the expressive power of LTL and CTL.

To do this, we give a branching time reading to LTL formulas that is

inspired by our interpretation of LTL formulas in model checking:

we view LTL formulas as implicitly universally quantified.

(in LTL we consider all paths)

LTL formula F 7→ CTL∗ formula AF

CTL is also a subset of CTL∗, since it is the fragment of CTL∗ in which

path quantifiers can only be applied to formulae starting with ©,U ,2, 3.

27

CTL vs LTL

Definition. We call two CTL∗ formulas F and G equivalent if, for all transition systems

T and states s of T , we have (T , s) |= F iff (T , s) |= G .

Some (but not all) LTL formulas can be converted into CTL formulas by adding an A

to each temporal operator.

Theorem. There exists formulae in LTL which cannot be expressed in LTL and

vice-versa.

• In CTL but not in LTL: A2E3F

This expresses: wherever we have got to, we can always get to a state in which

F is true.

This is also useful, e.g., in finding deadlocks in protocols.

• In LTL but not in CTL: A[23p → 3q]

“If there are infinitely many p along the path, then there is an occurrence of q.”

This is an interesting thing to be able to say; for example, many fairness

constraints are of the form “infinitely often requested implies eventually

acknowledged”.

28

Model Checking

The CTL model checking problem is as follows:

Given a transition system T = (S ,→, L) and a CTL formula F ,

check whether T satifies F , i.e., whether (T , s) |= F for all s ∈ S .

29

Model Checking

The CTL model checking problem is as follows:

Given a transition system T = (S ,→, L) and a CTL formula F ,

check whether T satifies F , i.e., whether (T , s) |= F for all s ∈ S .

Method (Idea)

(1) Arrange all subformulas Fi of F in a sequence F0, . . .Fk in ascending

order w.r.t. formula length: for 1 ≤ i < j ≤ k, Fi is not longer than Fj ;

(2) For all subformulas Fi of F , compute the set

sat(Fi) := {s ∈ S | (T , s) |= Fi}

in this order (from shorter to longer formulae);

(3) Check whether S ⊆ sat(F).

30

Model Checking

How to compute sat(Fi)

• p ∈ Π 7→ sat(p) = {s | L(p, s) = 1}

• sat(Fi ∧ Fj) = sat(Fi) ∩ sat(Fj)

• sat(¬Fi) = S\sat(Fi)

• sat(E © Fi) = {s |
E

t ∈ S : (s → t) ∧ t ∈ sat(Fi)}

• sat(A © Fi) = {s |

A

t ∈ S : (s → t) ∧ t ∈ sat(Fi)}

• sat(E(FiUFj)) and sat(A(FiUFj) are computed with the following

procedures:

31

Model Checking

F = E(FiUFj)

sat(F) := T := sat(F_j)

while T =\= {} do

choose s in T

T := T \ {s}

for all t in S with t -> s do

if t in sat(F_i) and t not in sat(F) then

sat(F) := sat(F) U {t}

T := T U {t}

F = A(FiUFj)

sat(F) := T := sat(F_j)

while T =\= {} do

choose s in T

T := T \ {s}

for all t in S with t -> s do

flag = 1

for all t’ in S with t -> t’ do

if t’ not in sat(F) then flag := 0

if t in sat(F_i) and t not in sat(F) and flag = 1 then

sat(F) := sat(F) U {t}

T := T U {t}

32

Model Checking

Theorem. (T , s) |= F iff s ∈ sat(F).

Consequence. CTL model checking is decidable.

Concerning the complexity, we observe the following: if F is of length n, then at most

n sets sat(Fi) need to be computed. How complex is it to compute each such set?

• F is a propositional letter or of the form F1 ∧ F2 or ¬F1: O(| S |) steps needed;

• F is of the form E © Fi or E(F1UF2): O(| S | + |→|) steps needed

the maximum cardinality of the initial set sat(Fj) is | S |, and, in the forall loop, each edge from

→ is “touched” at most once (in all iterations of the while);

• F is of the form A(F1UF2) : O(| S | + |→|2) steps needed

the maximum cardinality of the initial set sat(Fj) is | S |, the outer forall loop touches each edge

from → at most once, and the inner forall loop touches each edge at most once for each step done

by the outer forall loop.

There exist more efficient algorithms (complexity | F | ·O(| S | + |→|)).

33

