
Formal Specification and Verification

– Formal specification (generalities)

– Transition systems

4.06.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.

2

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification last time

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

• Specification languages for properties of programs/processes/systems

Temporal logic

3

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification today

transition systems, abstract state machines, specifications based on set theory...

Axiom-based specification

algebraic specification last time

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

• Specification languages for properties of programs/processes/systems

Temporal logic

4

Transition systems

Transition systems

• Executions

• Modeling data-dependent systems

5

Transition systems

• Model to describe the behaviour of systems

• Digraphs where nodes represent states, and edges model transitions

• State: Examples

– the current colour of a traffic light

– the current values of all program variables + the program counter

– the current value of the registers together with the values of the

input bits

• Transition (“state change”): Examples

– a switch from one colour to another

– the execution of a program statement

– the change of the registers and output bits for a new input

6

Transition systems

Definition.

A transition system TS is a tuple (S ,Act,→, I ,AP, L) where:

• S is a set of states

• Act is a set of actions

• →⊆ S × Act × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s
α
→ s′ instead of (s, α, s′) ∈→.

7

A beverage vending machine

8

Direct successors and predecessors

Post(s, α) = {s′ ∈ S | s
α
→ s′}, Post(s) =

S

α∈Act Post(s, α)

Pre(s, α) = {s′ ∈ S | s′
α
→ s}, Pre(s) =

S

α∈Act Pre(s, α)

Post(C , α) =
S

s∈C Post(s, α),

Post(C) =
S

α∈Act Post(C , α) for C ⊆ S

Pre(C , α) =
S

s∈C Pre(s, α),

Pre(C) =
S

α∈Act Pre(C ,α) for C ⊆ S

State s is called terminal if and only if Post(s) = ∅

9

Action- and AP-determinism

Definition. Transition system TS = (S ,Act,→, I ,AP, L) is action-

deterministic iff:

| I |≤ 1 and | Post(s, α) |≤ 1 for all s ∈ S ,α ∈ Act

(at most one initial state and for every action, a state has at most one

successor)

Definition. Transition system TS = (S ,Act,→, I ,AP, L) is AP-deterministic

iff:

| I |≤ 1 and | Post(s) ∩ {s′ ∈ S | L(s′) = A} |≤ 1 for all

s ∈ S ,A ∈ 2AP

(at most one initial state; for state and every A : AP → {0, 1} there exists

at most a successor of s in which “satisfies A”)

10

Non-determinism

Nondeterminism is a feature!

• to model concurrency by interleaving

- no assumption about the relative speed of processes

• to model implementation freedom

- only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems

- use incomplete information

11

Non-determinism

Nondeterminism is a feature!

• to model concurrency by interleaving

- no assumption about the relative speed of processes

• to model implementation freedom

- only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems

- use incomplete information

In automata theory, nondeterminism may be exponentially more succinct

but that’s not the issue here!

12

Transition systems 6= finite automata

As opposed to finite automata, in a transition system:

• there are no accept states

• set of states and actions may be countably infinite

• may have infinite branching

• actions may be subject to synchronization

• nondeterminism has a different role

Transition systems are appropriate for modelling reactive system behaviour

13

Executions

• A finite execution fragment ρ of TS is an alternating sequence of

states and actions ending with a state:

ρ = s0α1s1α2...αnsn such that si
αi+1
−→ si+1 for all 0 ≤ i < n.

• An infinite execution fragment ρ of TS is an infinite, alternating

sequence of states and actions:

ρ = s0α1s1α2s2α3... such that si
αi+1
−→ si+1 for all 0 ≤ i .

• An execution of TS is an initial, maximal execution fragment

– a maximal execution fragment is either finite ending in a terminal

state, or infinite

– an execution fragment is initial if s0 ∈ I

14

Examples of Executions

ρ1 : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ sprite

sget
→ . . .

ρ2 : select
τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ beer

bget
→ . . .

ρ : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
→ select

τ
→ sprite

15

Examples of Executions

ρ1 : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ sprite

sget
→ . . .

ρ2 : select
τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ beer

bget
→ . . .

ρ : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
→ select

τ
→ sprite

• Execution fragments ρ1 and ρ are initial, but ρ2 is not.

• ρ is not maximal as it does not end in a terminal state.

• Assuming that ρ1 and ρ2 are infinite, they are maximal

16

Reachable states

Definition. State s ∈ S is called reachable in TS if there exists an initial,

finite execution fragment

s0
α1→ s1

α2→ · · ·
αn→ sn = s

Reach(TS) denotes the set of all reachable states in TS .

17

Detailed description of states

Variables; Predicates

18

Beverage vending machine revisited

“Abstract” transitions:

start
true:coin

−−−−−−→ select and start
true:refill

−−−−−−→ start

select
nsprite>0:sget
−−−−−−→ start and select

nbeer>0:bget
−−−−−−→ start

select
nsprite=0∧nbeer=0:ret-coin

−−−−−−−−−−−→ start

Action Effect on variables

coin

ret-coin

sget nsprite := nsprite − 1

bget nbeer := nbeer − 1

refill nsprite := max ; nbeer := max

19

Program graph representation

20

Program graph representation

Some preliminaries

• typed variables with a valuation that assigns values in a fixed structure

to variables

- e.g., β(x) = 17 and β(y) = −2

• Boolean conditions: set of formulae over Var

- propositional logic formulas whose propositions are of the form

“x ∈ D”

- (−3 < x ≤ 5) ∧ (y = green) ∧ (x ≤ 2 ∗ x ′)

• effect of the actions is formalized by means of a mapping:

Effect : Act × Eval(Var) → Eval(Var)

- e.g., α ≡ x := y + 5 and evaluation β(x) = 17 and β(y) = −2

- Effect(α, β)(x) = β(y) + 5 = 3,

- Effect(α, β)(y) = β(y) = −2

21

Program graph representation

Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc,Act,Effect,→, Loc0, g0)

where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Act is a set of actions

• Effect : Act × Eval(Var) → Eval(Var) is the effect function

• → ⊆ Loc × (Cond(Var)
| {z }

Boolean conditions on Var

×Act) × Loc, transition relation

• g0 ∈ Cond(Var) is the initial condition.

Notation: l
g :α
→ l ′ denotes (l , g , α, l ′) ∈→.

22

Beverage Vending Machine

• Loc = {start, select} with Loc0 = {start}

• Act = {bget, sget, coin, ret-coin, refill}

• Var = {nsprite, nbeer} with domain {0, 1, ...,max}

• Effect : Act × Eval(Var) → Eval(Var) defined as follows:

Effect(coin, β) = β

Effect(ret-coin,β) = β

Effect(sget, β) = β[nsprite 7→ β(nsprite) − 1]

Effect(bget, β) = β[nbeer 7→ β(nbeer) − 1]

Effect(refill , β) = β[nsprite 7→ max , nbeer 7→ max]

• g0 = (nsprite = max ∧ nbeer = max)

23

From program graphs to transition systems

• Basic strategy: unfolding

- state = location (current control) l + data valuation β (l , β)

- initial state = initial location + data valuation satisfying

the initial condition g0

• Propositions and labeling

- propositions: “at l” and “x ∈ D” for D ⊆ dom(x)

- < l , β > is labeled with “at l” and all conditions that hold in β.

• l
g :α
→ l ′ and g holds in β then < l , β >

α
→< l ′ ,Effect(< l , β >) >

24

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc,Act,Effect,→,Loc0, g0)

over set Var of variables is the tuple (S ,Act,→, I ,AP, L) where:

• S = Loc × Eval(Var)

• → S × Act × S is defined by the rule:

If l
g :α
→ l ′ and β |= g then < l , β >

α
→< l ′ ,Effect(< l , β >) >

• I = {< l , β >| l ∈ Loc0, β |= g0}

• AP = Loc ∪ Cond(Var) and

• L(< l , β >) = {l} ∪ {g ∈ Cond(Var) | β |= g}.

25

Transition systems for program graphs

#2: Transition systems Model Checking

start

select

startstart

selectselect

start
startstart

select selectselect

startstart

selectselect

start

select

coin

coin coin

bget

sget

coincoincoin

bget

sget

coincoin

sget

bget

spritebeer

bget

sget

bget

sget

coinret coin

refill

refill refill

c© JPK 23

26

Generalizations of transition systems

• More detailed description of states: Abstract state machines

• Emphasis on processes and their interdependency: CSP

• Durations: Timed automata

• Continuous evolution + discrete control: Hybrid automata

27

Abstract state machines (ASM)

Purpose

Formalism for modelling/formalising (sequential) algorithms

Not: Computability / complexity analysis

Invented/developed by

Yuri Gurevich, 1988

Old name

Evolving algebras

28

ASMs

Three Postulates

Sequential Time Postulate:

An algorithm can be described by defining a set of states, a subset of initial

states, and a state transformation function

Abstract State Postulate:

States can be described as first-order structures

Bounded Exploration Postulate:

An algorithm explores only finitely many elements in a state to decide what

the next state is. There is a finite number of names (terms) for all these

“interesting” elements in all states.

29

Example: Computing Squares

Initial State

square = 0

count = 0

ASM for computing the square of input

if input < 0 then

input := - input

else if input > 0∧ count < input then

par

square := square + input

count := count +1

endpar

30

The Sequential Time Postulate

Sequential algorithm

An algorithm is associated with

• a set S of states

• a set I ⊆ S of initial states

• A function τ : S → S

(the one-step transformation of the algorithm)

Run (computation)

A run (computation) is a sequence X0,X1,X2 . . . of states such that

• X0 ∈ I

• τ(Xi) = Xi+1 for all i ≥ 0

31

Remark

Remark: In this formalism, algorithms are deterministic

τ : S → S can be also viewed as a relation R ⊆ S × {τ} × S with

(s, τ , s′) ∈ R iff τ(s) = s′ .

32

The Abstract State Postulate

States are first-order structures where

• all states have the same vocabulary (signature)

• the transformation τ does not change the base set (universe)

• S and I are closed under isomorphism

• if f is an isomorphism from a state X onto a state Y , then f is also

an isomorphism from τ(X) onto τ(Y).

33

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where

• each symbol is assigned an arity n ≥ 0

• symbols can be marked relational (predicates)

• symbols can be marked static (default: dynamic)

34

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where

• each symbol is assigned an arity n ≥ 0

• symbols can be marked relational (predicates)

• symbols can be marked static (default: dynamic)

Remark: This is not a restriction

• predicates with arity n can be regarded as functions with arity

s . . . s → bool

where s is the usual sort (for terms) and bool is a different sort

• The sort bool is described using a unary predicate Bool

• The sort Bool contains all formulae, in particular also ⊤,⊥ (“relational

constants”)

35

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where

• each symbol is assigned an arity n ≥ 0

• symbols can be marked relational (predicates)

• symbols can be marked static (default: dynamic)

Each signature contains

• the constant undef (“undefined”)

• the relational constants ⊤ (true), ⊥ (false)

• the unary relational symbols Boole,¬

• the binary relational symbols ∧,∨,→,↔,≈

These special symbols are all static

36

Vocabulary (Signature)

Signatures: A signature is a finite set of function/predicate symbols, where

• each symbol is assigned an arity n ≥ 0

• symbols can be marked static (default: dynamic)

Each signature contains

• the constant undef (“undefined”)

• the relational constants true, false

• the unary relational symbols Boole,¬

• the binary relational symbols ∧,∨,→,↔,≈

These special symbols are all static

There is an infinite set of variables

Terms are built as usual from variables and function symbols

Formulae are built as usual

37

First-order Structures (States)

First-order structures (states) consist of

• a non-empty universe (called BaseSet)

• an interpretation of the symbols in the signature

Restrictions on states

• 0, 1, undef ∈ BaseSet (different)

• ⊤A = 0, ⊥A = 1

• undefA = undef

• If f relational then fA : BaseSet → {0, 1}

• BooleA = {0, 1}

• ¬,∨,∧,→,↔ are interpreted as usual

38

The reserve of a state

Reserve: Consists of the elements that are “unknown” in a state

The reserve of a state must be infinite

39

Extended States

Variable assignment

A function β : Var → BaseSet

(boolean variables are assigned 0 or 1)

Extended state

A pair (A, β) consisting of a state A and a variable assignment β.

40

Extended States

Variable assignment

A function β : Var → BaseSet

(boolean variables are assigned 0 or 1)

Extended state

A pair (A, β) consisting of a state A and a variable assignment β.

Evaluation of terms and formulae: as usual

41

Example: Trees

Vocabulary

nodes: unary, boolean: the class of nodes

(type/universe)

strings: unary, boolean: the class of strings

parent: unary: the parent node

firstChild: unary: the first child node

nextSibling: unary: the first sibling

label: unary: node label

c: constant: the current node

42

Example: Trees

Terms

parent(parent(c))

label(firstChild(c))

parent(firstChild(c)) = c (Boolean, formula)

nodes(x) → parent(x) = parent(nextSibling(x))

(x is a variable)

43

Isomorphism

Lemma (Isomorphism)

Isomorphic states (structures) are indistinguishable by ground terms:

Justification for postulate

Algorithm must have the same behaviour for indistinguishable states

Isomorphic states are different representations of the same abstract state!

44

State updates

Locations. A location is a pair (f , a) with

• f an n-ary function symbol

• a ∈ BaseSetn an n-tuple

Examples

(parent, a), (firstChild , a), (nextSibling , a), (c,)

45

State updates

Locations. A location is a pair (f , a) with

• f an n-ary function symbol

• a ∈ BaseSetn an n-tuple

Examples

(parent, a), (firstChild , a), (nextSibling , a), (c,)

An update is a triple (f , a, b) with

• (f , a) a location

• f not static

• b ∈ BaseSet

• if f is relational, then b ∈ {0, 1}

46

State updates

Locations. A location is a pair (f , a) with

• f an n-ary function symbol

• a ∈ BaseSetn an n-tuple

Examples

(parent, a), (firstChild , a), (nextSibling , a), (c,)

An update is a triple (f , a, b) with

• (f , a) a location

• f not static

• b ∈ BaseSet

• if f is relational, then b ∈ {0, 1}

Intended meaning:

f is changed by changing f (a) to b.

47

State updates

Locations. A location is a pair (f , a) with

• f an n-ary function symbol

• a ∈ BaseSetn an n-tuple

Examples

(parent, a), (firstChild , a), (nextSibling , a), (c,)

An update is a triple (f , a, b) with

• (f , a) a location

• f not static

• b ∈ BaseSet

• if f is relational, then b ∈ {tt,ff }

Intended meaning:

f is changed by changing f (a) to b.

An update is trivial if fA(a) = b

48

Generalizations of transition systems

• More detailed description of states: Abstract state machines

• Emphasis on processes and their interdependency: CSP

• Durations: Timed automata

• Continuous evolution + discrete control: Hybrid automata

49

Timed automata

• transition systems + timing constraints

50

Timed automata

A timed automaton is a finite automaton extended with a finite set of

real-valued clocks. During a run of a timed automaton, clock values increase

all with the same speed. Along the transitions of the automaton, clock

values can be compared to integers. These comparisons form guards that

may enable or disable transitions and by doing so constrain the possible

behaviors of the automaton. Further, clocks can be reset.

51

Timed automata

A timed automaton is a finite automaton extended with a finite set of

real-valued clocks. During a run of a timed automaton, clock values increase

all with the same speed. Along the transitions of the automaton, clock

values can be compared to integers. These comparisons form guards that

may enable or disable transitions and by doing so constrain the possible

behaviors of the automaton. Further, clocks can be reset.

Timed automata can be used to model and analyse the timing behavior of

computer systems, e.g., real-time systems or networks.

52

Timed automata

Example: Simple Light Control

WANT: if press is issued twice quickly then the light will get brighter;

otherwise the light is turned off.

53

Timed automata

Example: Simple Light Control

Solution: Add a real-valued clock x

Adding continuous variables to transition systems

54

Timed automata: Syntax

• A finite set Loc of locations

• A subset Loc0 ⊆ Loc of initial locations

• A finite set Act of labels (alphabet, actions)

• A finite set X of clocks

• Invariant Inv(l) for each location l ∈ Loc: (clock constraint over X)

• A finite set E of edges. Each edge has:

– source location l , target location l ′

– label a ∈ Act (empty labels also allowed)

– guard g (a clock constraint over X)

– a subset X ′ of clocks to be reset

55

Timed automata: Semantics

For a timed automaton

A = (Loc,Loc0,Act,X , {Invl}l∈Loc ,E)

define an infinite state transition system S(A):

• States S : a state s is a pair (l , v), where

l is a location, and

v is a clock vector, mapping clocks in X to R, satisfying Inv(l)

• Initial States: (l , v) is initial state if l is in Loc0 and v(x) = 0

• Elapse of time transitions: for each nonnegative real number d ,

(l , v)
d
→ (l , v + d) if both v and v + d satisfy Inv(l)

• Location switch transitions: (l , v)
a
→ (l ′ , v ′) if there is an edge

(l , a, g ,X ′ , l ′) such that v satisfies g and v ′ = v [{x 7→ 0 | x ∈ X ′}].

56

Remark

The material on ASMs and timed automata is not required for the exam.

57

