Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

April 29, 2014

Exercises for "Formal Specification and Verification"
Exercise sheet 1

Exercise 1.1:

Determine the polarity of the following subformulae of

$$
F=\neg((\neg(P \wedge \neg Q)) \vee(R \vee \neg S)) \vee(U \wedge V)
$$

(1) $(P \wedge \neg Q)$
(4) Q
(2) $(R \vee \neg S)$
(5) S
(3) $((\neg(P \wedge \neg Q)) \vee(R \vee \neg S))$
(6) V

Exercise 1.2:

Let F be the following formula:

$$
\neg[((Q \wedge \neg P) \wedge \neg(Q \wedge R)) \rightarrow(Q \wedge(Q \rightarrow P) \wedge \neg P)] \wedge(P \vee R)
$$

(1) Compute the negation normal form (NNF) F^{\prime} of F.
(2) Convert F^{\prime} to CNF using the satisfiability-preserving transformation described in the lecture.

Exercise 1.3:

Consider the following deductive system for propositional logic (with signature \neg, \rightarrow):
Axiom schemata:
(1) $\neg p \rightarrow(p \rightarrow q)$
(2) $p \rightarrow(q \rightarrow p)$
(3) $(p \rightarrow q) \rightarrow((\neg p \rightarrow q) \rightarrow q)$
(4) $(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))$

Inference rules
Modus Ponens: $\frac{p, \quad p \rightarrow q}{q}$
Give a proof for $F \rightarrow F$ in this system.
Hint: You can e.g. use instances of axiom schema 2 (twice), 4, and Modus Ponens (twice).

Exercise 1.4:

Give a proof for

$$
\Rightarrow((P \rightarrow(Q \rightarrow R)) \rightarrow((P \rightarrow Q) \rightarrow(P \rightarrow R)))
$$

in the sequent calculus for propositional logic presented in the lecture.

Exercise 1.5:

Use the resolution calculus to prove that the following set of clauses is unsatisfiable:

Exercise 1.6:

Use a DPLL procedure to find a model of each of the following formulae, or prove that the particular formula has no model:
(1) $(P \vee \neg Q) \wedge(\neg P \vee Q) \wedge(Q \vee \neg R) \wedge(\neg Q \vee \neg R)$
(2) $(P \vee Q \vee \neg R) \wedge(P \vee \neg Q) \wedge(P \vee Q \vee R) \wedge(R \vee Q) \wedge(R \vee \neg Q) \wedge(\neg P \vee \neg R) \wedge \neg U$

Supplementary exercises (to be discussed on May 8, 2014)

Exercise 1.7:

Let F be a formula, P a propositional variable not occurring in F, and F^{\prime} a subformula of F.
Prove: The formula $F[P] \wedge\left(P \leftrightarrow F^{\prime}\right)$ is satisfiable if and only if $F\left[F^{\prime}\right]$ is satisfiable.

Exercise 1.8:

Let F be a formula containing neither \rightarrow nor \leftrightarrow, P a propositional variable not occurring in F, and F^{\prime} a subformula of F.
Prove:

- If F^{\prime} has positive polarity in F then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(P \rightarrow F^{\prime}\right)$ is satisfiable.
- If F^{\prime} has negative polarity in F then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(F^{\prime} \rightarrow P\right)$ is satisfiable.

Please submit your solution until Wednesday, May 7, 2014 at 11:00. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework FSW" in the subject.
- Put it in the box in Room B 222.

