Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

May 7, 2014

Exercises for "Formal Specification and Verification"
 Exercise sheet 2

Exercise 2.1:

Let F be the following formula:

$$
\neg[\neg(P \vee(\neg Q \vee R)) \vee(\neg(P \vee Q) \vee(P \vee R))]
$$

Convert F to CNF using the satisfiability-preserving transformation described in the lecture.

Exercise 2.2:

Use a DPLL procedure to find a model of each of the following formulae, or prove that the particular formula has no model:

$$
\text { (1) } \begin{aligned}
& \neg P_{6} \wedge\left(P_{2} \vee P_{6}\right) \wedge\left(\neg P_{5} \vee P_{6}\right) \wedge\left(\neg P_{2} \vee P \vee P_{1}\right) \wedge\left(\neg P_{1} \vee \neg Q \vee R\right) \wedge\left(P_{3} \vee P_{5}\right) \wedge\left(\neg P_{4} \vee\right. \\
& \left.P_{5}\right) \wedge\left(\neg P_{3} \vee P \vee Q\right) \wedge\left(\neg P \vee P_{4}\right) \\
& \text { (2) }\left(U \vee \neg P_{6}\right) \wedge\left(\neg U \vee \neg P_{6}\right) \wedge\left(P_{2} \vee P_{6}\right) \wedge\left(\neg P_{5} \vee P_{6}\right) \wedge\left(\neg P_{2} \vee P \vee P_{1}\right) \wedge\left(\neg P_{1} \vee \neg Q \vee R\right) \wedge \\
& \left(P_{3} \vee P_{5}\right) \wedge\left(\neg P_{4} \vee P_{5}\right) \wedge\left(\neg P_{3} \vee P \vee Q\right) \wedge\left(\neg P \vee P_{4}\right) \wedge\left(\neg R \vee P_{4}\right)
\end{aligned}
$$

Hint: (1) should be satisfiable; (2) should be unsatisfiable.

Exercise 2.3:

Consider the following boolean formula $F:=(P \wedge((Q \wedge \neg R) \vee(\neg Q \wedge R)))$.
(1) Construct a reduced OBDD B_{F} for F with the order $[P, Q, R]$ i.e. such that the root is a P-node followed by Q - and then R-nodes.
(2) Let B_{F} be the OBDD constructed previously. Construct the following OBDDs:
(a) restrict $\left(0, R, B_{F}\right)$;
(b) restrict $\left(1, R, B_{F}\right)$;
(c) $\operatorname{exists}\left(R, B_{F}\right)$.

Exercise 2.4:

Let $\Sigma=(\Omega, \Pi)$ be a signature, where $\Omega=\{f / 2, g / 1, a / 0, b / 0\}$ and $\Pi=\{p / 2\}$; let X be the set of variables $\{x, y, z\}$. Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae, which are neither?
(a) $\neg p(g(a), f(x, y))$
(b) $f(x, x) \approx x$
(c) $p(f(x, a), x) \vee p(a, b)$
(d) $p(\neg g(x), g(y))$
(e) $\neg p(f(x, y))$
(f) $p(a, b) \wedge p(x, y) \wedge y$
(g) $\exists y(\neg p(f(y, y), y))$
(h) $\forall x \forall y(g(p(x, y)) \approx g(x))$

Exercise 2.5:

Let $\Sigma=(S, \Omega, \Pi)$ be a many-sorted signature, where $S=\{$ int, list $\}, \Omega=\{$ cons, car, cdr, nil, $b\}$ and $\Pi=\{p\}$ with the following arities:

$$
\begin{aligned}
& a(\text { cons })=\text { int, list } \rightarrow \text { list } \quad a(\text { car })=\text { list } \rightarrow \text { int } \quad a(c d r)=\text { list } \rightarrow \text { list } \\
& a(\text { nil })=\rightarrow \text { list } \\
& a(b)=\rightarrow \text { int } \\
& a(p)=\text { int }, \text { list. }
\end{aligned}
$$

Let $X_{\text {int }}$ be the set of variables of sort int containing $\{i, j, k\}$, and let $X_{\text {list }}$ be the set of variables of sort list containing $\{x, y, z\}$. Let $X=\left\{X_{\text {int }}, X_{\text {list }}\right\}$. Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae ${ }^{1}$, which are neither?
(a) $\operatorname{cons(cons(b,~nil),~nil)~}$
(b) $\operatorname{cons}(b, \operatorname{cons}(b$, nil $))$
(c) $\neg p(b, \operatorname{cons}(b, \operatorname{cons}(b$, nil $)))$
(d) $\neg p(\operatorname{cons}(b$, nil $), \operatorname{cons}(b, \operatorname{cons}(b$, nil $)))$
(e) $\operatorname{cons}\left(b, \operatorname{cons}(b\right.$, nil) $) \approx_{l} \operatorname{cons}(\operatorname{cons}(x, b)$, nil $)$
(f) $\operatorname{cons}(i, \operatorname{cons}(b$, nil $)) \approx j$
(g) $p(\neg \operatorname{car}(x), x)$
(h) $\neg p(\operatorname{car}(x), x) \vee p(j, \operatorname{cons}(j, x))$
(i) $\neg p(b, x) \vee p(b, \operatorname{cons}(b, x)) \vee b$
(j) $\forall i$: int, $\forall x$: list $\left(\operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) \approx_{l} x\right)$
(k) $\exists i$: int, $\forall y$: list $\left(\operatorname{cons}(b, p(x, y)) \approx_{l} \operatorname{cdr}(y)\right)$

Please submit your solution until Wednesday, May 14, 2014 at 11:00. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework FSV" in the subject.
- Hand it in to me (Room B225) or drop it in the box in front of Room B224.

[^0]
[^0]: ${ }^{1}$ In first-order logic with equality, where equality between terms of sort int is \approx_{i} and equality between terms of sort list is \approx_{l}.

