Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

May 7, 2014

Exercises for "Formal Specification and Verification" Exercise sheet 2

Exercise 2.1:

Let F be the following formula:

 $\neg [\neg (P \lor (\neg Q \lor R)) \lor (\neg (P \lor Q) \lor (P \lor R))]$

Convert F to CNF using the satisfiability-preserving transformation described in the lecture.

Exercise 2.2:

Use a DPLL procedure to find a model of each of the following formulae, or prove that the particular formula has no model:

- (1) $\neg P_6 \land (P_2 \lor P_6) \land (\neg P_5 \lor P_6) \land (\neg P_2 \lor P \lor P_1) \land (\neg P_1 \lor \neg Q \lor R) \land (P_3 \lor P_5) \land (\neg P_4 \lor P_5) \land (\neg P_3 \lor P \lor Q) \land (\neg P \lor P_4)$
- $(2) \quad (U \lor \neg P_6) \land (\neg U \lor \neg P_6) \land (P_2 \lor P_6) \land (\neg P_5 \lor P_6) \land (\neg P_2 \lor P \lor P_1) \land (\neg P_1 \lor \neg Q \lor R) \land (P_3 \lor P_5) \land (\neg P_4 \lor P_5) \land (\neg P_3 \lor P \lor Q) \land (\neg P \lor P_4) \land (\neg R \lor P_4)$

Hint: (1) should be satisfiable; (2) should be unsatisfiable.

Exercise 2.3:

Consider the following boolean formula $F := (P \land ((Q \land \neg R) \lor (\neg Q \land R))).$

- (1) Construct a reduced OBDD B_F for F with the order [P, Q, R] i.e. such that the root is a P-node followed by Q- and then R-nodes.
- (2) Let B_F be the OBDD constructed previously. Construct the following OBDDs:
 - (a) restrict $(0, R, B_F)$;
 - (b) restrict $(1, R, B_F)$;
 - (c) exists (R, B_F) .

Exercise 2.4:

Let $\Sigma = (\Omega, \Pi)$ be a signature, where $\Omega = \{f/2, g/1, a/0, b/0\}$ and $\Pi = \{p/2\}$; let X be the set of variables $\{x, y, z\}$. Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae, which are neither?

(a) $\neg p(g(a), f(x, y))$ (b) $f(x, x) \approx x$ (c) $p(f(x, a), x) \lor p(a, b)$ (d) $p(\neg g(x), g(y))$ (e) $\neg p(f(x, y))$ (f) $p(a, b) \land p(x, y) \land y$ (g) $\exists y(\neg p(f(y, y), y))$

(h) $\forall x \forall y (g(p(x,y)) \approx g(x))$

Exercise 2.5:

Let $\Sigma = (S, \Omega, \Pi)$ be a many-sorted signature, where $S = \{int, list\}, \Omega = \{cons, car, cdr, nil, b\}$ and $\Pi = \{p\}$ with the following arities:

 $a(\text{cons}) = \text{int}, \text{list} \to \text{list}$ $a(\text{car}) = \text{list} \to \text{int}$ $a(\text{cdr}) = \text{list} \to \text{list}$ $a(\text{nil}) = \to \text{list}$ (i.e. nil is a constant of sort list) $a(b) = \to \text{int}$ (i.e. b is a constant of sort int) a(p) = int, list.

Let X_{int} be the set of variables of sort int containing $\{i, j, k\}$, and let X_{list} be the set of variables of sort list containing $\{x, y, z\}$. Let $X = \{X_{int}, X_{list}\}$. Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae¹, which are neither?

- (a) cons(cons(b, nil), nil)
- (b) cons(b, cons(b, nil))

(c)
$$\neg p(b, cons(b, cons(b, nil)))$$

- (d) $\neg p(\operatorname{cons}(b, \operatorname{nil}), \operatorname{cons}(b, \operatorname{cons}(b, \operatorname{nil})))$
- (e) $\operatorname{cons}(b, \operatorname{cons}(b, \operatorname{nil})) \approx_l \operatorname{cons}(\operatorname{cons}(x, b), \operatorname{nil})$
- (f) $cons(i, cons(b, nil)) \approx j$
- (g) $p(\neg \mathsf{car}(x), x)$
- (h) $\neg p(\mathsf{car}(x), x) \lor p(j, \mathsf{cons}(j, x))$
- (i) $\neg p(b, x) \lor p(b, \operatorname{cons}(b, x)) \lor b$
- (j) $\forall i : int, \forall x : list (cons(car(x), cdr(x)) \approx_l x)$
- (k) $\exists i : \mathsf{int}, \forall y : \mathsf{list} (\mathsf{cons}(b, p(x, y)) \approx_l \mathsf{cdr}(y))$

Please submit your solution until Wednesday, May 14, 2014 at 11:00. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework FSV" in the subject.
- Hand it in to me (Room B225) or drop it in the box in front of Room B224.

¹In first-order logic with equality, where equality between terms of sort int is \approx_i and equality between terms of sort list is \approx_l .