Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

May 14, 2014

Exercises for "Formal Specification and Verification" Exercise sheet 3

Exercise 3.1:

Compute the results of the following substitutions:

- (a) f(g(x), x)[g(a)/x]
- (b) p(f(y,x),g(x))[x/y]
- (c) $\forall y(p(f(y,x),g(y)))[x/y]$
- (d) $\forall y(p(f(y,x),x))[y/x]$
- (e) $\forall y(p(f(z, g(y)), g(x)) \lor \exists z(g(z) \approx y))[g(b)/z]$
- (f) $\exists y (f(x,y) \approx x \rightarrow \forall x (f(x,y) \approx x)) [g(y)/y, g(z)/x]$

Exercise 3.2:

Prove or refute the following statements:

- (a) If F is a first-order formula, then F is valid if and only if $F \to \bot$ is unsatisfiable.
- (b) If F and G are first-order formulae, F is valid, and $F \to G$ is valid, then G is valid.
- (c) If F and G are first-order formulae, F is satisfiable, and $F \to G$ is satisfiable, then G is satisfiable.
- (d) If F is a first-order formula and x a variable, then F is unsatisfiable if and only if $\exists xF$ is unsatisfiable.
- (e) If F and G are first-order formulae and x is a variable then $\forall x(F \land G) \models \forall xF \land \forall xG$ and $\forall xF \land \forall xG \models \forall x(F \land G)$.
- (f) If F and G are first-order formulae and x is a variable then $\exists x(F \land G) \models \exists xF \land \exists xG$ and $\exists xF \land \exists xG \models \exists x(F \land G)$.

Exercise 3.3:

Let $\Sigma = (\Omega, \Pi)$, where $\Omega = \{0/0, s/1, +/2\}$ and $\Pi = \emptyset$ (i.e. the only predicate symbol is \approx). Consider the following formulae in the signature Σ :

- 1. $F_1 = \forall x \ (x + 0 \approx x)$
- 2. $F_2 = \forall x, y \ (x + s(y) \approx s(x + y))$

3. $F_3 = \forall x, y \ (x + y \approx y + x).$

Find a Σ -structure in which F_1 and F_2 are valid but F_3 is not.

Definitions and notations:

Let $\Sigma = (\Omega, \Pi)$ be a signature and $\mathcal{A} = (U, \{f_{\mathcal{A}}: U^n \to U\}_{f/n \in \Omega}, \{p_{\mathcal{A}}: U^m \to \{0, 1\}_{p/m \in \Pi}\})$ be a Σ -structure.

• An equivalence relation $\sim \subseteq U \times U$ is a congruence relation¹ if it is compatible with the operations and predicates, i.e. for every $f/n \in \Omega$ and $p/m \in \Pi$:

 $\forall x_1, \dots, x_n, y_1, \dots, y_n \in U, \ (x_1 \sim y_1 \land \dots \land x_n \sim y_n \to f_{\mathcal{A}}(x_1, \dots, x_n) \sim f_{\mathcal{A}}(y_1, \dots, y_n)) \\ \forall x_1, \dots, x_m, y_1, \dots, y_m \in U, \ (x_1 \sim y_1 \land \dots \land x_m \sim y_m \to p_{\mathcal{A}}(x_1, \dots, x_m) = p_{\mathcal{A}}(y_1, \dots, y_m)).$

- The quotient structure is $\hat{\mathcal{A}} = \mathcal{A}/\sim = (\hat{U}, \{f_{\hat{\mathcal{A}}}: \hat{U}^n \to \hat{U}\}_{f/n \in \Omega}, \{p_{\hat{\mathcal{A}}}: \hat{U}^m \to \{0, 1\}_{p/m \in \Pi})$, where:
 - $\begin{array}{l} \hat{U} = U/\!\!\sim = \{[x] \mid x \in U\}, \text{ where } [x] = \{y \in U \mid x \sim y\} \\ f_{\hat{\mathcal{A}}}([x_1], \dots, [x_n]) = [f(x_1, \dots, x_n)] \text{ for every } f/n \in \Omega \\ p_{\hat{\mathcal{A}}}([x_1], \dots, [x_m]) = p(x_1, \dots, x_n) \text{ for every } p/m \in \Pi. \end{array}$
- A term Σ -structure (or a Herbrand interpretation over Σ) is a Σ -structure \mathcal{A} having as universe the set T_{Σ} of ground terms and the operations defined by $f_{\mathcal{A}}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$ and arbitrarily defined predicates.
- If $\Pi = \emptyset$ (i.e. \approx is the unique predicate) then there is only one term Σ -structure (Herbrand interpretation), which we will denote with \mathcal{T}_{Σ} .

Exercise 3.4:

 $\Sigma = (\Omega, \Pi)$ with $\Omega = \{b/0, f/1\}$ and $\Pi = \{p/1\}.$

- (1) How many different Herbrand interpretations over Σ exist? Explain briefly.
- (2) Consider the formula $F := p(f(f(b))) \land \forall x (p(x) \to p(f(x)))$. How many different Herbrand models over Σ does the formula F have? Explain briefly.
- (3) Every Herbrand interpretation which is a model of F is also a model of $G := \forall x \, p(f(f(x)))$. Give an example of an algebra that is a model of F but not of G.
- (4) Let \mathcal{A} be a Herbrand interpretation over Σ and let \sim be the binary relation on T_{Σ} defined by:

$$t_1 \sim t_2$$
 iff $\forall x (f(f(f(x))) = x) \models t_1 \approx t_2$.

- Is ~ a congruence relation on \mathcal{A} ?
- Describe the quotient structure \mathcal{A}/\sim .
- Describe the class $\{\mathcal{A}/\sim \mid \mathcal{A} \text{ Herbrand interpretation over } \Sigma\}$.

Exercise 3.5:

Consider the following specification of binary trees (in a variant of the CASL syntax)

¹In the many-sorted case the definitions are similar, with the difference that $T_{\Sigma} = \{T_{\Sigma}^s\}_{s \in S}$, where T_{Σ}^s is the set of all terms of sort s, and a congruence relation \sim consists of a family of equivalence relations $\{\sim_s \subseteq U_s \times U_s\}_{s \in S}$ which is compatible with the operations and predicates (similar definition, but the sorts of the variables x_i, y_i correspond to the arity of f; for comparing two terms of sort s the predicate \sim_s is used).

spec	BinTree =	
	sort	elem, tree
	operations	$a:\rightarrow elem$
		$empty:\totree$
		$leaf:elem\totree$
		$make:tree,tree\totree$
		$right:tree\totree$
		$left:tree\totree$
	Axioms:	$\forall x_1, x_2: tree, \forall e: elem:$
		• right(empty) \approx empty
		• right(leaf(e)) \approx empty
		• left(empty) \approx empty
		• $left(leaf(e)) \approx empty$
		• left(make $(x_1, x_2)) \approx x_1$
		• right(make(x_1, x_2)) $\approx x_2$

(1) Let \mathcal{F} be the set of axioms in the specification above. Which of the following hold?

- (1a) $\mathcal{F} \models \mathsf{left}(\mathsf{make}(\mathsf{empty},\mathsf{empty})) \approx \mathsf{empty}$
- (1b) $\mathcal{F} \models \mathsf{make}(x_1, x_2) = \mathsf{empty}$
- (1c) $\mathcal{F}\models(x_2\approx \mathsf{empty} \land x_3\approx \mathsf{make}(x_1,\mathsf{empty})) \rightarrow \mathsf{make}(\mathsf{left}(\mathsf{make}(x_1,x_2)),\mathsf{right}(\mathsf{leaf}(e))\approx x_3 \otimes \mathsf{make}(x_1,\mathsf{make}(x_1,x_2)))$
- (1d) $\mathcal{F} \models \mathsf{make}(x_1, \mathsf{make}(x_2, x_3)) = x_2$
- (2) Let ~ be defined on T_{Σ} by:

$$t_1 \sim t_2$$
 iff $\mathcal{F} \models t_1 \approx t_2$.

Describe the quotient algebra $\mathcal{T}_{\Sigma}/\sim$.

(3) Let \sim' be defined on T_{Σ} by

 $t_1 \sim' t_2$ iff $(\mathcal{F} \cup \{ \forall x \operatorname{left}(x) \approx \operatorname{right}(x) \} \models t_1 \approx t_2).$

Describe the quotient algebra $\mathcal{T}_{\Sigma}/\sim'$.

Please submit your solution until Wednesday, May 21, 2014 at 11:00. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework FSV" in the subject.
- Hand it in to me (Room B225) or drop it in the box in front of Room B224.