Formal Specification and Verification

Deductive Verification: An introduction

24.07.2014

Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de

Overview

• Model checking:

Finite transition systems / CTL properties

States are "entities" (no precise description, except for labelling functions)

No precise description of actions (only \rightarrow important)

Overview

• Model checking:

```
Finite transition systems / CTL properties
States are "entities" (no precise description, except for labelling
functions)
No precise description of actions (only \rightarrow important)
```

Extensions in two possible directions:

- More precise description of the actions/events
 - Propositional Dynamic Logic (last time)
 - Hoare logic (not discussed in this lecture)
- More precise description of states (and possibly also of actions)
 - succinct representation: formulae represent a set of states
 - deductive verification

(today)

Transition systems (Reminder)

- Model to describe the behaviour of systems
- Digraphs where nodes represent states, and edges model transitions
- State: Examples
 - the current colour of a traffic light
 - the current values of all program variables + the program counter
 - the current value of the registers together with the values of the input bits
- **Transition** ("state change"): Examples
 - a switch from one colour to another
 - the execution of a program statement
 - the change of the registers and output bits for a new input

Transition systems

Definition.

- A transition system TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where:
 - *S* is a set of states
 - Act is a set of actions
 - $\rightarrow \subseteq S \times Act \times S$ is a transition relation
 - $I \subseteq S$ is a set of initial states
 - AP is a set of atomic propositions
 - $L: S \rightarrow 2^{AP}$ is a labeling function

S and Act are either finite or countably infinite Notation: $s \xrightarrow{\alpha} s'$ instead of $(s, \alpha, s') \in \rightarrow$.

Programs and transition systems

Program graph representation

Program graph representation

Some preliminaries

- typed variables with a valuation that assigns values in a fixed structure to variables
 - e.g., $\beta(x) = 17$ and $\beta(y) = -2$
- Boolean conditions: set of formulae over Var
 - propositional logic formulas whose propositions are of the form " $x \in D$ "

-
$$(-3 < x \le 5) \land (y = green) \land (x \le 2 * x')$$

• effect of the actions is formalized by means of a mapping:

$$Effect : Act \times Eval(Var) \rightarrow Eval(Var)$$

- e.g., $\alpha \equiv x := y + 5$ and evaluation $\beta(x) = 17$ and $\beta(y) = -2$

- Effect $(\alpha, \beta)(x) = \beta(y) + 5 = 3$,
- Effect $(\alpha, \beta)(y) = \beta(y) = -2$

Program graph representation

Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc, Act, Effect,
$$\rightarrow$$
, Loc₀, g_0)

where

- Loc is a set of locations with initial locations $Loc_0 \subseteq Loc$
- Act is a set of actions
- Effect : $Act \times Eval(Var) \rightarrow Eval(Var)$ is the effect function
- $\rightarrow \subseteq$ Loc \times (Cond(Var) \times Act) \times Loc, transition relation

Boolean conditions on Var

• $g_0 \in Cond(Var)$ is the initial condition.

Notation: $I \xrightarrow{g:\alpha} I'$ denotes $(I, g, \alpha, I') \in \rightarrow$.

From program graphs to transition systems

- Basic strategy: unfolding
 - state = location (current control) I + data valuation β
- (I, β)
- initial state = initial location + data valuation satisfying

the initial condition g_0

- Propositions and labeling
 - propositions: "at I" and " $x \in D$ " for $D \subseteq dom(x)$
 - < I, β > is labeled with "at I" and all conditions that hold in β .
- $I \xrightarrow{g:\alpha} I'$ and g holds in β then $< I, \beta > \xrightarrow{\alpha} < I'$, $Effect(< I, \beta >) >$

Transition systems for program graphs

The transition system TS(PG) of program graph

$$PG = (Loc, Act, Effect, \rightarrow, Loc_0, g_0)$$

over set *Var* of variables is the tuple $(S, Act, \rightarrow, I, AP, L)$ where:

- $S = Loc \times Eval(Var)$
- $\rightarrow S \times Act \times S$ is defined by the rule: If $I \stackrel{g:\alpha}{\rightarrow} I'$ and $\beta \models g$ then $\langle I, \beta \rangle \stackrel{\alpha}{\rightarrow} \langle I', Effect(\langle I, \beta \rangle) \rangle$
- $I = \{ < I, \beta > | I \in Loc_0, \beta \models g_0 \}$
- $AP = Loc \cup Cond(Var)$ and
- $L(\langle I, \beta \rangle) = \{I\} \cup \{g \in Cond(Var) \mid \beta \models g\}.$

Problem

Set of states: $S = Loc \times Eval(Var)$

Eval(*Var*) can be very large (some variables can have values in large data domains e.g. integers)

Therefore it is also difficult to concretely represent \rightarrow (the relation usually very large as well)

Solution

Succinct representation of sets of states and of transitions between states

- Set of states: Formula (property of all states in the set)
- Transitions: Formulae (relation between the old values of the variables and the new values of the variables)

States:

 (I, β) , where I location and β assignment of values to the variables.

States:

 (I, β) , where I location and β assignment of values to the variables. Idea: Take into account an additional variable pc (program counter), having as domain the set of locations.

State: assignment of values to the variables and to pc

States:

 (I, β) , where I location and β assignment of values to the variables. Idea: Take into account an additional variable pc (program counter), having as domain the set of locations.

State: assignment of values to the variables and to pc

Set of states: Logical formula

Example:

 $y \ge z$: The set of all states (I, β) for which $\beta(y) \ge \beta(z)$ (i.e. $\beta \models y \ge z$)

Transition relation: $(I, \beta) \rightarrow (I', \beta')$

Transition relation: $(I, \beta) \rightarrow (I', \beta')$

Expressed by logical formulae: Formula containing primed and unprimed variables. Example:

• $\rho_1 = (move(l_1, l_2) \land y \ge z \land skip(x, y, z))$

•
$$\rho_2 = (move(l_2, l_2) \land x + 1 \leq y \land x' = x + 1 \land skip(y, z))$$

- $\rho_3 = (move(l_2, l_3) \land x \ge y \land skip(x, y, z))$
- $\rho_4 = (move(I_3, I_4) \land x \ge z \land skip(x, y, z))$
- $\rho_5 = (move(l_3; l_5) \land x + 1 \leq z \land skip(x, y, z))$

Abbreviations:

$$move(I, I') := (pc = I \land pc' = I')$$

skip(v₁, ..., v_n) := (v'_1 = v_1 \land \cdots \land v'_n = v_n)

Verification problem: Program + Description of the "bad" states Succinct representation:

$${\sf P}=({\it Var},{\it pc},{\it Init},{\cal R}) \qquad \phi_{{\sf err}}$$

- V finite (ordered) set of program variables
- *pc* program counter variable (*pc* included in *V*)
- Init initiation condition given by formula over V
- \mathcal{R} a finite set of transition relations Every transition relation $\rho \in \mathcal{R}$ is given by a formula over the variables V and their primed versions V'
- $\phi_{\rm err}$ an error condition given by a formula over V

- Each program variable x is assigned a domain of values D_x .
- Program state = function that assigns each program variable a value from its respective domain
- S = set of program states
- Formula with free variables in V = set of program states
- Formula with free variables in V and V' = binary relation over program states
 - First component of each pair refers to values of the variables V
 - Second component of the pair refers to values of the variables V' (typically the new variables of the variables in V after an instruction was executed)

- We identify formulas with the sets and relations that they represent
- We identify the entailment relation between formulas \models with set inclusion
- We identify the satisfaction relation \models between valuations and formulas, with the membership relation.

- We identify formulas with the sets and relations that they represent
- We identify the entailment relation between formulas \models with set inclusion
- We identify the satisfaction relation \models between valuations and formulas, with the membership relation.

Example:

- Formula y ≥ z = set of program states in which the value of the variable y is greater than the value of z
- Formula $y' \ge z =$ binary relation over program states, = set of pairs of program states (s_1, s_2) in which the value of the variable y in the second state s_2 is greater than the value of z in the first state s_1

- We identify formulas with the sets and relations that they represent
- We identify the entailment relation between formulas \models with set inclusion
- We identify the satisfaction relation \models between valuations and formulas, with the membership relation.

Example:

- Formula y ≥ z = set of program states in which the value of the variable y is greater than the value of z
- Formula y' ≥ z = binary relation over program states, = set of pairs of program states (s₁, s₂) in which the value of the variable y in the second state s₂ is greater than the value of z in the first state s₁
- If program state s assigns 1, 3, 2, and l₁ to program variables x, y, z, and pc, respectively, then s ⊨ y ≥ z

- We identify formulas with the sets and relations that they represent
- We identify the entailment relation between formulas \models with set inclusion
- We identify the satisfaction relation |= between valuations and formulas, with the membership relation.

Example:

- Formula $y \ge z =$ set of program states in which the value of the variable y is greater than the value of z
- Formula y' ≥ z = binary relation over program states, = set of pairs of program states (s₁, s₂) in which the value of the variable y in the second state s₂ is greater than the value of z in the first state s₁
- If program state s assigns 1, 3, 2, and l_1 to program variables x, y, z, and pc, respectively, then $s \models y \ge z$
- Logical consequence: $y \ge z \models y + 1 \models z$

Example Program

Example program

- Program variables V = (pc, x, y, z)
- Program counter *pc*
- Program variables x, y, and z range over integers: $D_x = D_y = D_z = Int$ Program counter pc ranges over control locations: $D_{pc} = L$
- Set of control locations $L = \{l_1, l_2, l_3, l_4, l_5\}$
- Initiation condition $Init := (pc = l_1)$
- Error condition $\phi_{err} := (pc = l_5)$

• Program transitions
$$\mathcal{R} = \{\rho_1, \dots, \rho_5\}$$
, where:
 $\rho_1 = (move(l_1, l_2) \land y \ge z \land skip(x, y, z))$
 $\rho_2 = (move(l_2, l_2) \land x + 1 \le y \land x' = x + 1 \land skip(y, z))$
 $\rho_3 = (move(l_2, l_3) \land x \ge y \land skip(x, y, z))$
 $\rho_4 = (move(l_3, l_4) \land x \ge z \land skip(x, y, z))$
 $\rho_5 = (move(l_3; l_5) \land x + 1 \le z \land skip(x, y, z))$

Initial state, error state, transition relation

- Each state that satisfies the initiation condition *Init* is called an initial state
- Each state that satisfies the error condition *err* is called an error state
- Program transition relation $\rho_{\mathcal{R}}$ is the union of the single-statement transition relations (formula representation: disjunction) i.e.,

$$\rho_{\mathcal{R}} = \bigvee_{\rho \in \mathcal{R}} \rho$$

• The state s has a transition to the state s' if the pair of states (s, s')lies in the program transition relation ρ_R , i.e., if $(s, s') \models \rho_R$:

-
$$s: V \to \bigcup_{x \in V} D_x$$
, $s(x) \in D_x$ for all $x \in V$

- $s': V' \to \bigcup_{x \in V} D_x$, $s(x') \in D_x$ for all $x \in V$
- $\beta : V \cup V' \bigcup_{x \in X} D_x$ defined for every $x \in V$ by $\beta(x) = s(x)$, $\beta(x') = s'(x)$ has the property that $\beta \models \rho_R$

Computation

A program computation is a sequence of states $s_1 s_2 \ldots$ such that:

- The first element is an initial state, i.e., $s_1 \models \textit{Init}$
- Each pair of consecutive states (s_i, s_{i+1}) is connected by a program transition, i.e., (s_i, s_{i+1}) ⊨ ρ_R.
- If the sequence is finite then the last element does not have any successors i.e., if the last element is s_n , then there is no state s such that $(s_n, s) \models \rho_R$.

Example Program

Example of a computation:

 $(I_1, 1, 3, 2), (I_2, 1, 3, 2), (I_2, 2, 3, 2), (I_2, 3, 3, 2), (I_3, 3, 3, 2), (I_4, 3, 3, 2)$

- sequence of transitions ρ_1 , ρ_2 , ρ_2 , ρ_3 , ρ_4
- state = tuple of values of program variables pc, x, y, and z
- last program state does not any successors

Correctness: Safety

- a state is reachable if it occurs in some program computation
- a program is safe if no error state is reachable
- ... if and only if no error state lies in ϕ_{reach} ,

 $\phi_{\mathsf{err}} \land \phi_{\mathsf{reach}} \models \perp$

where $\phi_{\text{reach}} = \text{set}$ of program states which are reachable from some initial state

• ... if and only if no initial state lies in $\phi_{reach^{-1}}$,

$$\textit{Init} \land \phi_{\mathsf{reach}^{-1}}(\phi_{\mathsf{err}}) \models \perp$$

where $\phi_{\text{reach}-1}(\phi_{\text{err}}) = \text{set of program states from which some state}$ in ϕ_{err} is reachable

Set of reachable states:

$$egin{aligned} \phi_{reach} &= & (pc = l_1 ee) \ & & (pc = l_2 \land y \ge z) ee \ & & (pc = l_3 \land y \ge z \land x \ge y) ee \ & & (pc = l_4 \land y \ge z \land x \ge y) ee \end{aligned}$$

Post operator

Let ϕ be a formula over V

Let ρ be a formula over V and V'

Define a post-condition function *post* by:

$$post(\phi, \rho) = \exists V'' : \phi[V''/V] \land \rho[V''/V][V/V']$$

An application $post(\phi, \rho)$ computes the image of the set ϕ under the relation ρ .

Let ϕ be a formula over V Let ρ be a formula over V and V'

Define a post-condition function *post* by:

$$post(\phi, \rho) = \exists V'' : \phi[V''/V] \land \rho[V''/V][V/V']$$

An application $post(\phi, \rho)$ computes the image of the set ϕ under the relation ρ .

post distributes over disjunction wrt. each argument:

- $post(\phi, \rho_1 \lor \rho_2) = post(\phi, \rho_1) \lor post(\phi, \rho_2)$
- $post(\phi_1 \lor \phi_2, \rho) = post(\phi_1, \rho) \lor post(\phi_2, \rho)$

Application of post in example program

Set of states $\phi := (pc = l_2 \land y \ge z)$

Transition relation $\rho := \rho_2$

$$ho_2 = (\mathit{move}(\mathit{I}_2, \mathit{I}_2) \land x + 1 \leq y \land x' = x + 1 \land \mathit{skip}(y, z))$$

$$post(\phi, \rho) = \exists V''(pc = l_2 \land y \ge x)[V''/V] \land \rho_2[V''/V][V/V'] \\ = \exists V''(pc'' = l_2 \land y'' \ge x'') \land \\ (pc'' = l_2 \land pc' = l_2 \land x'' + 1 \le y'' \land x' = x'' + 1 \land y' = y'' \land z' = z'')[V \\ = \exists V''(pc'' = l_2 \land y'' \ge x'') \land \\ (pc'' = l_2 \land pc = l_2 \land x'' + 1 \le y'' \land x = x'' + 1 \land y = y'' \land z = z'') \\ = (pc = l_2 \land y \le z \land x \le y)$$

Application of post in example program

Set of states $\phi := (pc = l_2 \land y \ge z)$

Transition relation $\rho := \rho_2$

$$\rho_2 = (\textit{move}(\textit{I}_2,\textit{I}_2) \land x + 1 \leq y \land x' = x + 1 \land \textit{skip}(y,z))$$

$$post(\phi, \rho) = \exists V''(pc = l_2 \land y \ge x)[V''/V] \land \rho_2[V''/V][V/V'] \\ = \exists V''(pc'' = l_2 \land y'' \ge x'') \land \\ (pc'' = l_2 \land pc' = l_2 \land x'' + 1 \le y'' \land x' = x'' + 1 \land y' = y'' \land z' = z'')[V \\ = \exists V''(pc'' = l_2 \land y'' \ge x'') \land \\ (pc'' = l_2 \land pc = l_2 \land x'' + 1 \le y'' \land x = x'' + 1 \land y = y'' \land z = z'') \\ = (pc = l_2 \land y \le z \land x \le y)$$

[Renamed] program variables:

V = (pc, x, y, z), V' = (pc', x', y', z'), V'' = (pc'', x'', y'', z'')

Iteration of post

$$post^{n}(\phi, \rho) = n$$
-fold application of post to ϕ under ρ
 $post^{n}(\phi, \rho) = \begin{cases} \phi & \text{if } n = 0\\ post(post^{n-1}(\phi, \rho)), \rho) & \text{otherwise} \end{cases}$

Characterize ϕ_{reach} using iterates of post:

$$\phi_{\text{reach}} = \text{Init} \lor post(Init, \rho_{\mathcal{R}}) \lor post(post(Init, \rho_{\mathcal{R}}), \rho_{\mathcal{R}}) \lor \dots$$
$$= \bigvee_{i \ge 0} post^{i}(Init, \rho_{\mathcal{R}})$$

disjuncts = iterates for every natural number n (" ω -iteration")

Fixpoint reached in *n* steps if $\bigvee_{i=1}^{n} post^{i}(Init, \rho_{\mathcal{R}}) = \bigvee_{i=1}^{n+1} post^{i}(Init, \rho_{\mathcal{R}})$

Then $\bigvee_{i=1}^{n} post^{i}(Init, \rho_{\mathcal{R}}) = \bigvee_{i\geq 0} post^{i}(Init, \rho_{\mathcal{R}})$

Compute
$$\bigvee_{i=1}^{n} post^{i}(Init, \rho_{\mathcal{R}}), n \geq 0.$$

If there exists $m \in \mathbb{N}$ such that

$$\bigvee_{i=1}^{n} post^{i}(Init, \rho_{\mathcal{R}}) = \bigvee_{i=1}^{n+1} post^{i}(Init, \rho_{\mathcal{R}})$$

then fixpoint reached.

Let $\phi_{\text{reach}} := \bigvee_{i=1}^{n} post^{i}(Init, \rho_{\mathcal{R}})$

If $\phi_{\text{reach}} \cap \phi_{\text{err}} = \emptyset$ then safety is guaranteed.