
Formal Specification and Verification

Deductive Verification: An introduction (2)

29.07.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Overview

• Model checking:

Finite transition systems / CTL properties

States are “entities” (no precise description, except for labelling

functions)

No precise description of actions (only → important)

2

Overview

• Model checking:

Finite transition systems / CTL properties

States are “entities” (no precise description, except for labelling

functions)

No precise description of actions (only → important)

Extensions in two possible directions:

• More precise description of the actions/events

- Propositional Dynamic Logic (last time)

- Hoare logic (not discussed in this lecture)

• More precise description of states (and possibly also of actions)

- succinct representation: formulae represent a set of states

- deductive verification (today)

3

Last time

Transition systems revisited

Program graphs

From program graphs to transition systems

Set of states: S = Loc × Eval(Var)

Problem

Eval(Var) can be very large

(some variables can have values in large data domains e.g. integers)

Therefore it is difficult to concretely represent →

(the relation usually very large as well)

4

Solution

Succinct representation of sets of states and of transitions between states

• Set of states: Formula (property of all states in the set)

• Transitions: Formulae (relation between the old values of the variables

and the new values of the variables)

5

Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

States:

(l , β), where l location and β assignment of values to the variables.

Idea: Take into account an additional variable pc (program counter), having

as domain the set of locations.

State: assignment of values to the variables and to pc

Set of states: Logical formula

Example:

y ≥ z: The set of all states (l ,β) for which β(y) ≥ β(z) (i.e. β |= y ≥ z)

6

Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

Transition relation: (l , β) → (l′,β′)
Expressed by logical formulae: Formula containing primed and unprimed variables.

Example:

• ρ1 = (move(l1, l2) ∧ y ≥ z ∧ skip(x , y , z))

• ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x′ = x + 1 ∧ skip(y , z))

• ρ3 = (move(l2, l3) ∧ x ≥ y ∧ skip(x , y , z))

• ρ4 = (move(l3, l4) ∧ x ≥ z ∧ skip(x , y , z))

• ρ5 = (move(l3; l5) ∧ x + 1 ≤ z ∧ skip(x , y , z))

Abbreviations:

move(l , l′) := (pc = l ∧ pc′ = l′)

skip(v1, . . . , vn) := (v ′

1 = v1 ∧ · · · ∧ v ′

n = vn)

7

Programs as transition systems

Verification problem: Program + Description of the “bad” states

Succinct representation:

P = (Var , pc, Init,R) φerr

• V - finite (ordered) set of program variables

• pc - program counter variable (pc included in V)

• Init - initiation condition given by formula over V

• R - a finite set of transition relations

Every transition relation ρ ∈ R is given by a formula over the variables

V and their primed versions V ′

• φerr - an error condition given by a formula over V

8

States, sets and relations

• Each program variable x is assigned a domain of values Dx .

• Program state = function that assigns each program variable a value

from its respective domain

• S = set of program states

• Formula with free variables in V = set of program states

• Formula with free variables in V and V ′ = binary relation over

program states

– First component of each pair refers to values of the variables V

– Second component of the pair refers to values of the variables V ′

(typically the new variables of the variables in V after an instruction

was executed)

9

States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.

10

States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.

Example:

• Formula y ≥ z = set of program states in which the value of the

variable y is greater than the value of z

• Formula y ′ ≥ z = binary relation over program states, = set of pairs

of program states (s1, s2) in which the value of the variable y in the

second state s2 is greater than the value of z in the first state s1

11

States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.

Example:

• Formula y ≥ z = set of program states in which the value of the variable y is

greater than the value of z

• Formula y ′ ≥ z = binary relation over program states, = set of pairs of program

states (s1, s2) in which the value of the variable y in the second state s2 is

greater than the value of z in the first state s1

• If program state s assigns 1, 3, 2, and l1 to program variables x , y , z , and pc,

respectively, then s |= y ≥ z

12

States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.

Example:

• Formula y ≥ z = set of program states in which the value of the variable y is

greater than the value of z

• Formula y ′ ≥ z = binary relation over program states, = set of pairs of program

states (s1, s2) in which the value of the variable y in the second state s2 is

greater than the value of z in the first state s1

• If program state s assigns 1, 3, 2, and l1 to program variables x , y , z , and pc,

respectively, then s |= y ≥ z

• Logical consequence: y ≥ z |= y + 1 |= z

13

Example Program

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

14

Example program

• Program variables V = (pc, x , y , z)

• Program counter pc

• Program variables x , y , and z range over integers: Dx = Dy = Dz = Int

Program counter pc ranges over control locations: Dpc = L

• Set of control locations L = {l1, l2, l3, l4, l5}

• Initiation condition Init := (pc = l1)

• Error condition φerr := (pc = l5)

• Program transitions R = {ρ1, . . . , ρ5}, where:

ρ1 = (move(l1, l2) ∧ y ≥ z ∧ skip(x , y , z))

ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x′ = x + 1 ∧ skip(y , z))

ρ3 = (move(l2, l3) ∧ x ≥ y ∧ skip(x , y , z))

ρ4 = (move(l3, l4) ∧ x ≥ z ∧ skip(x , y , z))

ρ5 = (move(l3; l5) ∧ x + 1 ≤ z ∧ skip(x , y , z))

15

Initial state, error state, transition relation

• Each state that satisfies the initiation condition Init is called an initial

state

• Each state that satisfies the error condition err is called an error state

• Program transition relation ρR is the union of the single-statement

transition relations (formula representation: disjunction) i.e.,

ρR =
∨

ρ∈R

ρ

• The state s has a transition to the state s′ if the pair of states (s, s′)
lies in the program transition relation ρR, i.e., if (s, s′) |= ρR:

– s : V →
⋃

x∈V Dx , s(x) ∈ Dx for all x ∈ V

– s′ : V ′ →
⋃

x∈V Dx , s(x′) ∈ Dx for all x ∈ V

– β : V ∪V ′
⋃

x∈X Dx defined for every x ∈ V by β(x) = s(x),β(x′) = s′(x)

has the property that β |= ρR

16

Computation

A program computation is a sequence of states s1s2 . . . such that:

• The first element is an initial state, i.e., s1 |= Init

• Each pair of consecutive states (si , si+1) is connected by a program

transition, i.e., (si , si+1) |= ρR.

• If the sequence is finite then the last element does not have any

successors i.e., if the last element is sn, then there is no state s such

that (sn, s) |= ρR.

17

Example Program

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

Example of a computation:

(l1, 1, 3, 2), (l2, 1, 3, 2), (l2, 2, 3, 2), (l2, 3, 3, 2), (l3, 3, 3, 2), (l4, 3, 3, 2)

• sequence of transitions ρ1, ρ2, ρ2, ρ3, ρ4

• state = tuple of values of program variables pc, x , y , and z

• last program state does not any successors

18

Correctness: Safety

• a state is reachable if it occurs in some program computation

• a program is safe if no error state is reachable

• . . . if and only if no error state lies in φreach,

φerr ∧ φreach |=⊥

where φreach = set of program states which are reachable from some

initial state

• . . . if and only if no initial state lies in φreach−1 ,

Init ∧ φreach−1(φerr) |=⊥

where φreach−1(φerr) = set of program states from which some state

in φerr is reachable

19

Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

Set of reachable states:

φreach = (pc = l1∨

(pc = l2 ∧ y ≥ z)∨

(pc = l3 ∧ y ≥ z ∧ x ≥ y)∨

(pc = l4 ∧ y ≥ z ∧ x ≥ y)

20

Post operator

Let φ be a formula over V

Let ρ be a formula over V and V ′

Define a post-condition function post by:

post(φ, ρ) =
E

V ′′ : φ[V ′′/V] ∧ ρ[V ′′/V][V /V ′]

An application post(φ, ρ) computes the image of the set φ under the

relation ρ.

21

Post operator

Let φ be a formula over V

Let ρ be a formula over V and V ′

Define a post-condition function post by:

post(φ, ρ) =
E

V ′′ : φ[V ′′/V] ∧ ρ[V ′′/V][V /V ′]

An application post(φ, ρ) computes the image of the set φ under the

relation ρ.

post distributes over disjunction wrt. each argument:

• post(φ, ρ1 ∨ ρ2) = post(φ, ρ1) ∨ post(φ, ρ2)

• post(φ1 ∨ φ2, ρ) = post(φ1, ρ) ∨ post(φ2, ρ)

22

Application of post in example program

Set of states φ := (pc = l2 ∧ y ≥ z)

Transition relation ρ := ρ2

ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x′ = x + 1 ∧ skip(y , z))

post(φ, ρ) =

E

V ′′(pc = l2 ∧ y ≥ x)[V ′′/V] ∧ ρ2[V
′′/V][V/V ′]

=
E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc′ = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x′ = x′′ + 1 ∧ y ′ = y ′′ ∧ z′ = z′′)[V/V

=

E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x = x′′ + 1 ∧ y = y ′′ ∧ z = z′′)

= (pc = l2 ∧ y ≤ z ∧ x ≤ y)

23

Application of post in example program

Set of states φ := (pc = l2 ∧ y ≥ z)

Transition relation ρ := ρ2

ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x′ = x + 1 ∧ skip(y , z))

post(φ, ρ) =

E

V ′′(pc = l2 ∧ y ≥ x)[V ′′/V] ∧ ρ2[V
′′/V][V/V ′]

=
E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc′ = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x′ = x′′ + 1 ∧ y ′ = y ′′ ∧ z′ = z′′)[V/V

=

E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x = x′′ + 1 ∧ y = y ′′ ∧ z = z′′)

= (pc = l2 ∧ y ≤ z ∧ x ≤ y)

[Renamed] program variables:

V = (pc, x , y , z),V ′ = (pc′, x′, y ′, z′),V ′′ = (pc′′, x′′, y ′′, z′′)

24

Iteration of post

postn(φ, ρ) = n-fold application of post to φ under ρ

postn(φ, ρ) =

φ if n = 0

post(postn−1(φ, ρ)), ρ) otherwise

Characterize φreach using iterates of post:

φreach = Init ∨ post(Init, ρR) ∨ post(post(Init, ρR), ρR) ∨ . . .

=
∨

i≥0 post
i (Init, ρR)

disjuncts = iterates for every natural number n (“ω-iteration”)

25

Finite iteration post may suffice

Fixpoint reached in n steps if
∨n

i=1 post
i (Init, ρR) =

∨n+1
i=1 post i (Init, ρR)

Then
∨n

i=1 post
i (Init, ρR) =

∨

i≥0 post
i (Init, ρR)

26

Forward reachability analysis

Compute
∨n

i=1 post
i (Init, ρR), n ≥ 0.

If there exists m ∈ N such that

n∨

i=1

post i (Init, ρR) =
n+1∨

i=1

post i (Init, ρR)

then fixpoint reached.

Let φreach :=
∨n

i=1 post
i (Init, ρR)

If φreach ∩ φerr = ∅ then safety is guaranteed.

27

Backward reachability analysis

Another possibility: Start from a bad state and compute states from which

the bad state can be reached.

If the initial states are not among these states then safety is guaranteed.

28

Pre operator

Let φ be a formula over V

Let ρ be a formula over V and V ′

Define a pre-condition function pre by:

pre(φ, ρ) =
E

V ′ : ρ ∧ φ[V ′/V]

An application pre(φ, ρ) computes the preimage of the set φ under the

relation ρ.

Computation of pren similar.

29

Problem

Reasoning modulo theories

30

Reasoning modulo theories

Goal: Devise efficient methods for reasoning modulo theories

SAT checking (can reduce entailment to checking satisfiability)

Example:

Check whether conjunctions of constraints in linear arithmetic is satisfiable:

classical methods exist, e.g. simplex.

Check whether a conjunction of equalities and disequalities of ground terms

is satisfiable: methods exist (e.g. congruence closure)

Challenge: efficient methods for handling arbitrary Boolean combinations of

constraints in such theories.

Possible solution: Extend the DPLL method to reasoning modulo theories.

31

Reminder: The DPLL algorithm

State: M||F ,

where:

- M partial assignment (sequence of literals),

some literals are annotated (Ld : decision literal)

- F clause set.

32

A succinct formulation

UnitPropagation

M||F ,C ∨ L ⇒ M, L||F ,C ∨ L if M |= ¬C , and L undef. in M

Decide

M||F ⇒ M, Ld ||F if L or ¬L occurs in F , L undef. in M

Fail

M||F ,C ⇒ Fail if M |= ¬C , M contains no decision literals

Backjump

M, Ld ,N||F ⇒ M, L′||F if

there is some clause C ∨ L′ s.t.:

F |= C ∨ L′,M |= ¬C ,

L′ undefined in M

L′ or ¬L′ occurs in F .

33

SAT Modulo Theories (SMT)

Some problems are more naturally expressed in richer logics than just

propositional logic, e.g:

• Software/Hardware verification needs reasoning about equality,

arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a ground 1st-order formula

with respect to a background theory T

34

SAT Modulo Theories (SMT)

The “very eager” approach to SMT

Method:

– translate problem into equisatisfiable propositional formula;

– use off-the-shelf SAT solver

• Why “eager”?

Search uses all theory information from the beginning

• Characteristics:

+ Can use best available SAT solver

− Sophisticated encodings are needed for each theory

− Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

- DPLL-based techniques for handling the boolean structure

- Efficient theory solvers for conjunctions of T -literals

35

SAT Modulo Theories (SMT)

“Lazy” approaches to SMT: Idea

Example: consider T = UIF and the following set of clauses:

f (g(a)) 6≈ f (c)
︸ ︷︷ ︸

¬P1

∨ g(a) ≈ d
︸ ︷︷ ︸

P2

, g(a) ≈ c
︸ ︷︷ ︸

P3

, c 6≈ d
︸ ︷︷ ︸

¬P4

1. Send {¬P1∨P2, P3, ¬P4} to SAT solver

SAT solver returns model [¬P1,P3,¬P4]

Theory solver says ¬P1 ∧ P3 ∧ ¬P4 is T -inconsistent

2. Send {¬P1∨P2, P3, ¬P4, P1∨¬P3∨P4} to SAT solver

SAT solver returns model [P1,P2,P3,¬P4]

Theory solver says P1 ∧ P2 ∧ P3 ∧ ¬P4 is T -inconsistent

3. Send {¬P1∨P2,P3,¬P4,P1∨¬P3∨P4,¬P1∨¬P2∨¬P3∨P4} to SAT solver

SAT solver says UNSAT

36

Example

37

Example: Water tank

L > L
alarm

L < L
alarm

L′ := inc(L)

L′ := inc(dec(L)) L′ := inc(L)

L′ := inc(dec(L))

38

Example: Water tank

L > L
alarm

L < L
alarm

L′ := inc(L)

L′ := inc(dec(L)) L′ := inc(L)

L′ := inc(dec(L))

39

Example: Water tank

L > L
alarm

L < L
alarm

L′ := inc(L)

L′ := inc(dec(L)) L′ := inc(L)

L′ := inc(dec(L))

Axioms: Variant 1

A

L L≤inc(L)

A

L dec(L)≤L

A

L inc(dec(L)) ≤ L

A
L L≤Lalarm → inc(L)≤Loverflow

Lalarm ≤ Loverflow

Axioms: Variant 2

A

L L≤inc(L)

A

L dec(L)≤L

A

L inc(dec(L)) ≤ L

A

L, L′ L ≤ L′ → inc(L)≤inc(L′)

inc(Lalarm) ≤ Loverflow

40

Example: Water tank

Model checking starts with the representation of unsafe states

¬safe ≡ L > Loverflow

The pre-states of ¬safe are given by:

We solved both these proof tasks using H-PiLoT. (0.080987s/0.12798s)

41

Example: Water tank

Discussing the example

• Type of properties not included in the type of problems the

present implementation of FOMC can handle

inc(dec(L)) ≤ L

L > Lalarm → inc(L) ≤ Loverflow

• Theories needed in verification problems could be proved to

be well-behaved (with or without monotonicity of inc, dec).

42

Example: Water tank

Also studied: variant of previous example: watertank with delay

- Reaction not immediate (“old” update rule maintained once more)

- Changed description of transitions

To ensure safety we need slightly different properties, including

(5′)

A

L L ≤ Lalarm → inc(inc(L)) ≤ Loverflow

FOMC: Two iterations needed (Can also be proved by HPiLoT)

Note: to simplify proof tasks use Pre2(¬safe) =
∨

φi ;

check φi ∧ ¬Pre(¬safe) |=⊥ for all i

43

Problems

It is not guaranteed that the fixpoint is reached in a finite/bounded number

of steps.

44

Problems

It is not guaranteed that the fixpoint is reached in a finite/bounded number

of steps.

Need to analyze alternative solutions

45

Verification

Modeling/Formalization

Invariant checking/ BMC Model Checking Abstraction/ Refinement

System Specification

Is the system safe?

Can we generate an invariant which implies safety?
Is the safety property an invariant of the system?

of length < n which start in an initial state?
Is safety guaranteed on all paths

46

Verification

Modeling/Formalization

Automated reasoning

− full theory

− abstraction of theory

Interpolation

− use interpolants
 for refining abstraction

Invariant checking/ BMC Model Checking Abstraction/ Refinement

System Specifications

Complex theories

47

Invariant checking; Bounded model checking

S specification 7→ ΣS signature of S ; TS theory of S ; TS transition system

Init(x); ρR(x , x′)

Given: Safe(x) formula (e.g. safety property)

• Invariant checking

(1) TS |= Init(x) → Safe(x) (Safe holds in the initial state)

(2) TS |= Safe(x)∧ρR(x , x′)→Safe(x ′) (Safe holds before ⇒ holds after update)

• Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps,
i.e. for all 0 ≤ j ≤ k:

TS |= Init(x0) ∧ ρR(x0, x1) ∧ · · · ∧ ρR(xj−1, xj) ∧ ¬Safe(xj) →⊥

48

Reasoning modulo theories

Goal: Devise efficient methods for reasoning modulo theories

49

Problems

− First order logic is undecidable

− In applications, theories do not occur alone

7→ need to consider combinations of theories

+ Fragments of theories occurring in applications are often decidable

+ Often provers for the component theories can be combined efficiently

50

Probleme

− First order logic is undecidable

− In applications, theories do not occur alone

7→ need to consider combinations of theories

+ Fragments of theories occurring in applications are often decidable

+ Often provers for the component theories can be combined efficiently

Important goals:

• Identify decidable theories which are important in applications
(Extensions/Combinations) possibly with low complexity

• Development & Implementation of efficient Decision Procedures

51

Example: ETCS Case Study (AVACS project)

Simplified version of ETCS Case Study [Jacobs,VS’06, Faber,Jacobs,VS’07]

Number of trains: n ≥ 0 Z

Minimum and maximum speed of trains: 0 ≤ min < max R

Minimum secure distance: lalarm > 0 R

Time between updates: ∆t > 0 R

Train positions before and after update: pos(i), pos′(i) : Z → R

52

Example: ETCS Case Study (AVACS project)

Simplified version of ETCS Case Study [Jacobs,VS’06, Faber,Jacobs,VS’07]

Update(pos, pos′) : •

A

i (i = 0 → pos(i) + ∆t∗min ≤ pos′(i) ≤ pos(i) + ∆t∗max)

•

A

i (0 < i < n ∧ pos(i − 1) > 0 ∧ pos(i − 1) − pos(i) ≥ lalarm

→ pos(i) + ∆t ∗ min ≤ pos′(i) ≤ pos(i) + ∆t∗max)

...

53

Example: ETCS Case Study (AVACS project)

Safety property: No collisions Safe(pos) :

A

i , j(i<j→pos(i)>pos(j))

Inductive invariant: Safe(pos)∧Update(pos, pos′)∧¬Safe(pos′) |=TS
⊥

where TS is the extension of the (disjoint) combination R ∪ Z

with two functions, pos, pos′ : Z → R

Problem: Satisfiability test for quantified formulae in complex theory

54

More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]

• Take into account also:

− Emergency messages

− Durations

• Specification language: CSP-OZ-DC

− Reduction to satisfiability in theories for which

decision procedures exist

• Tool chain: [Faber, Ihlemann, Jacobs, VS]

CSP-OZ-DC 7→ Transition constr. 7→ Decision procedures (H-PILoT)

55

Example 2: Parametric topology

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

56

Parametricity and modularity

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

Approach:

• Decompose the system in trajectories (linear rail tracks; may overlap)

• Task 1: - Prove safety for trajectories with incoming/outgoing trains

- Conclude that for control rules in which trains have sufficient

freedom (and if trains are assigned unique priorities) safety

of all trajectories implies safety of the whole system

• Task 2: - General constraints on parameters which guarantee safety

57

Parametricity and modularity

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

Data structures:

p1: trains

• 2-sorted pointers

p2: segments

• scalar fields (f :pi→R, g :pi→Z)

• updates efficient decision procedures (H-PiLoT)

58

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

• updSpd (speed update)

• req (request update)

• alloc (allocation update)

• updPos (position update)

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

Between these events, trains may leave or enter the track (at specific

segments), modeled by the events leave and enter.

59

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init formulae, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system

Data structures:

train: trains
• 2-sorted pointers

segm: segments

60

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init formulae, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system, and are used in the OZ part of the

specification.

• 2. Axioms: define properties of the data structures and system

parameters which do not change

• gmax : R (the global maximum speed),

• decmax : R (the maximum deceleration of trains),

• d : R (a safety distance between trains),

• Properties of the data structures used to model trains/segments

61

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init formulae, update rules.

• 3. Init schema. describes the initial state of the system.

• trains - doubly-linked list; placed correctly on the track segments

• all trains respect their speed limits.

• 4. Update rules specify updates of the state space executed when the

corresponding event from the CSP part is performed.

Example: Speed update

62

Modular Verification

COD 7→ ΣS signature of S ; TS theory of S ; TS transition constraint system

specification Init(x); Update(x , x′)

Given: Safe(x) formula (e.g. safety property)

• Invariant checking

(1) |=TS
Init(x) → Safe(x) (Safe holds in the initial state)

(2) |=TS
Safe(x)∧Update(x , x′)→Safe(x′) (Safe holds before ⇒ holds after update)

• Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps,
i.e. for all 0 ≤ j ≤ k:

Init(x0) ∧ Update1(x0, x1) ∧ · · · ∧ Updaten(xj−1, xj) ∧ ¬Safe(xj) |=TS
⊥

63

Trains on a linear track

Example 1: Speed Update

pos(t) < length(segm(t)) − d → 0 ≤ spd′(t) ≤ lmax(segm(t))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) = tid(t)

→ 0 ≤ spd′(t) ≤ min(lmax(segm(t)), lmax(nexts (segm(t))))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) 6= tid(t)

→ spd′(t) = max(spd(t) − decmax, 0)

64

Trains on a linear track

Example 1: Speed Update

pos(t) < length(segm(t)) − d → 0 ≤ spd′(t) ≤ lmax(segm(t))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) = tid(t)

→ 0 ≤ spd′(t) ≤ min(lmax(segm(t)), lmax(nexts (segm(t))))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) 6= tid(t)

→ spd′(t) = max(spd(t) − decmax, 0)

Proof task:

Safe(pos, next, prev, spd) ∧ SpeedUpdate(pos, next, prev, spd, spd′) → Safe(pos′, next, prev, spd

65

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s1 6= nulls , t1 6= nullt , train(s) 6= t1, alloc(s1) = idt(t1)

t 6=t1, ids(segm(t))<ids(s1), nextt (t)=nullt , alloc(s1)=tid(t1) → next′(t)=t1 ∧ next′(t1)=nullt

t 6=t1, ids(segm(t))<ids(s1), alloc(s1)=tid(t1), nextt (t) 6=nullt , ids(segm(nextt(t)))≤ids(s1)

→ next′(t)=nextt(t)

...
t 6=t1, ids(segm(t))≥ids(s1) → next′(t)=nextt (t)

66

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s1 6= nulls , t1 6= nullt , train(s) 6= t1, alloc(s1) = idt(t1)

t 6=t1, ids(segm(t))<ids(s1), nextt (t)=nullt , alloc(s1)=tid(t1) → next′(t)=t1 ∧ next′(t1)=nullt

t 6=t1, ids(segm(t))<ids(s1), alloc(s1)=tid(t1), nextt (t) 6=nullt , ids(segm(nextt(t)))≤ids(s1)

→ next′(t)=nextt(t)

...
t 6=t1, ids(segm(t))≥ids(s1) → next′(t)=nextt (t)

67

Safety property

Safety property we want to prove:

no two different trains ever occupy the same track segment:

(Safe)

A

t1, t2 segm(t1) = segm(t2) → t1 = t2

In order to prove that (Safe) is an invariant of the system, we need to find a

suitable invariant (Invi) for every control location i of the TCS, and prove:

(1) (Invi) |= (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,

(Invi) ∧ (Update) |= (Inv′j)

whenever (Update) is a transition from location i to j .

68

Safety property

Safety property we want to prove:

no two different trains ever occupy the same track segment:

(Safe)

A

t1, t2 segm(t1) = segm(t2) → t1 = t2

In order to prove that (Safe) is an invariant of the system, we need to find a

suitable invariant (Invi) for every control location i of the TCS, and prove:

(1) (Invi) |= (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,

(Invi) ∧ (Update) |= (Inv′j)

whenever (Update) is a transition from location i to j .

Here: Invi generated by hand (use poss. of generating counterexamples with H-PILoT)

69

Verification problems

(1) (Invi) |= (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,

(Invi) ∧ (Update) |= (Inv′j)

whenever (Update) is a transition from location i to j .

Ground satisfiability problems for pointer data structures

Problem: Axioms, Invariants: are universally quantified

Our solution: Hierarchical reasoning in local theory extensions

70

Modularity in automated reasoning

Examples of theories we need to handle

• Invariants

(Inv1)

A

t : Train. pc 6= InitState ∧ alloc(nexts (segm(t))) 6= tid(t)

→ length(segm(t))− bd(spd(t)) > pos(t) + spd(t) ·∆t

(Inv2)

A

t : Train. pc 6= InitState ∧ pos(t) ≥ length(segm(t))− d

→ spd(t) ≤ lmax(nexts (segm(t)))

71

Modularity in automated reasoning

Examples of theories we need to handle

• Invariants

(Inv1)

A

t : Train. pc 6= InitState ∧ alloc(nexts (segm(t))) 6= tid(t)

→ length(segm(t))− bd(spd(t)) > pos(t) + spd(t) ·∆t

(Inv2)

A

t : Train. pc 6= InitState ∧ pos(t) ≥ length(segm(t))− d

→ spd(t) ≤ lmax(nexts (segm(t)))

• Update rules

A

t : φ1(t) → s1 ≤ spd′(t) ≤ t1

. . .

A

t : φn(t) → sn ≤ spd′(t) ≤ tn

72

Example 2

Hybrid systems 7→ Hybrid automata

73

Example 2

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Chemical plant

Two substances are mixed; they react. The resulting

product is filtered out; then the procedure is repeated.

Check:

• No overflow

• Substances always in the right proportion

• If substances in wrong proportion,

tank can be drained in ≤ 200s.

Parametric description:

• Determine values for parameters

such that this is the case

74

Example 2

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Mode 1: Fill Temperature is low, 1 and 2 do not react.

Substances 1 and 2 (possibly mixed with a small quantity of 3)

are filled in the tank in equal quantities up to a margin of error.

Inv1 x1 + x2 + x3 ≤ Lf ∧
∧3
i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ min

flow1 ˙x1≥dmin ∧ ˙x2≥dmin ∧ ẋ3=0 ∧ −δa≤ ˙x1−ẋ2≤δa

Jumps: (1,4)

If proportion not kept: system jumps into mode 4 (Dump)

e1 guarde1
(x1, x2, x3) = x1−x2≥ǫa

(from 1 to 4) jumpe1
(x1, x2, x3, x

′

1 , x
′

2 , x
′

3) =
∧3
i=1 x′

i
=0

e2 guarde1
(x1, x2, x3) = x1−x2≤ − ǫa

(from 1 to 4) jumpe1
(x1, x2, x3, x

′

1 , x
′

2 , x
′

3) =
∧3
i=1 x′

i
=0

75

Example

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Mode 1: Fill Temperature is low, 1 and 2 do not react.

Substances 1 and 2 (possibly mixed with a small quantity of 3)

are filled in the tank in equal quantities up to a margin of error.

Inv1 x1 + x2 + x3 ≤ Lf ∧
∧3
i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ min

flow1 ˙x1≥dmin ∧ ˙x2≥dmin ∧ ẋ3=0 ∧ −δa≤ ˙x1−ẋ2≤δa

Jumps: (1,2)

If the total quantity of substances exceeds level Lf (tank

filled) the system jumps into mode 2 (React).

e = (1, 2) guard(1,2)(x1, x2, x3) = x1+x2+x3≥Lf

jump(1,2)(x1, x2, x3, x
′

1 , x
′

2 , x
′

3) =
∧3
i=1 x′

i
=xi

76

Example

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Mode 2: React Temperature is high. Substances 1 and 2 react.

The reaction consumes equal quantities of substances 1 and 2

and produces substance 3.

Inv2 Lf ≤ x1 + x2 + x3 ≤ Loverflow ∧
∧3
i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ max

flow2 ˙x1 ≤ −dmax ∧ ẋ2 ≤ −dmax ∧ ẋ3 ≥ dmin

∧ ˙x1 = ˙x2 ∧ ˙x3 + ˙x1 + ẋ2 = 0

Jumps:

If the proportion between substances 1 and 2 is not kept

the system jumps into mode 4 (Dump);

If the total quantity of substances 1 and 2 is below some minimal

level min the system jumps into mode 3 (Filter).

77

Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Inv

flow

Mode 3: Filter Temperature is low. Substance 3 is filtered out.

Inv3 x1 + x2 + x3 ≤ Loverflow ∧
∧3
i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ x3 ≥ min

flow3 ˙x1 = 0 ∧ ẋ2 = 0 ∧ ˙x3 ≤ −dmax

Jumps:

If proportion not kept: system jumps into mode 4 (Dump);

Otherwise, if the concentration of substance 3 is below some

minimal level min the system jumps into mode 1 (Fill).

78

Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Mode 4: Dump The content of the tank is emptied.

For simplicity we assume that this happens instantaneously:

Inv4 :
∧3
i=1 xi = 0 and flow4 :

∧3
i=1 ẋi = 0.

79

Simple verification problems

Invariant checking: Check whether Ψ is an invariant in a HA S, i.e.:

(1) Initq |= Ψ for all q ∈ Q;

(2) Ψ is invariant under jumps and flows:

(Flow) For every flow in mode q, the continuous variables satisfy Ψ during and

at the end of the flow.

(Jump) For every jump according to a control switch e, if Ψ holds before the

jump, it holds after the jump.

Examples:

• Is “x1 + x2 + x3 ≤ Loverflow” an invariant? (no overflow)

• Is “−ǫa ≤ x1 − x2 ≤ ǫa” an invariant?

(substances always mixed in the right proportion)

80

Simple verification problems

Bounded model checking: Is formula Safe preserved under runs of length ≤ k?, i.e.:

(1) Initq |= Safe for every q ∈ Q;

(2) The continuous variables satisfy Safe during and at the end of all runs of length

j for all 1≤j≤k.

Example:

• Is “x1 + x2 + x3 ≤ Loverflow” true after all runs of length ≤ k starting from a

state with e.g. x1 = x2 = x3 = 0?

• Is “−ǫa ≤ x1 − x2 ≤ ǫa” true after all runs of length ≤ k starting from a state

with x1 = x2 = x3 = 0?

81

Simple verification problems

Reductions of verification problems to linear arithmetic

(1) Mode invariants, initial states and guards of mode switches

are described as conjunctions of linear inequalities.

Example: Invq =
∧mq

j=1(
∑n

i=1 a
q
ijxi≤a

q
j) can be expressed by:

Invq(x1(t), . . . , xn(t)) =
∧mq

j=1(
∑n

i=1 a
q
ij
xi (t) ≤ a

q
j
)

82

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:

flowq =
∧nq

j=1(
∑n

i=1 c
q
ij

.
x i≤c

q
j
), i.e. flowq(t) =

∧nq
j=1(

∑n
i=1 c

q
ij

.
x i (t) ≤ c

q
j
).

83

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:

flowq =
∧nq

j=1(
∑n

i=1 c
q
ij

.
x i≤c

q
j
), i.e. flowq(t) =

∧nq
j=1(

∑n
i=1 c

q
ij

.
x i (t) ≤ c

q
j
).

Approach: Express the flow conditions in [t0, t1] without referring to derivatives.

Flowq(t0, t1) :

A

t(t0≤t≤t1→Invq(x(t))) ∧

A

t, t′(t0≤t≤t′≤t1→flowq(t, t
′)).

where: flowq(t, t
′) =

∧nq
j=1(

∑n
i=1 c

q
ij
(xi (t

′)− xi (t)) ≤ c
q
j
(t′ − t)).

84

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:

flowq =
∧nq

j=1(
∑n

i=1 c
q
ij

.
x i≤c

q
j
), i.e. flowq(t) =

∧nq
j=1(

∑n
i=1 c

q
ij

.
x i (t) ≤ c

q
j
).

Approach: Express the flow conditions in [t0, t1] without referring to derivatives.

Flowq(t0, t1) :
A

t(t0≤t≤t1→Invq(x(t))) ∧
A

t, t′(t0≤t≤t′≤t1→flowq(t, t
′)).

where: flowq(t, t
′) =

∧nq
j=1(

∑n
i=1 c

q
ij (xi (t

′)− xi (t)) ≤ c
q
j (t

′ − t)).

Remark: Flowq(t0, t1) contains universal quantifiers.

Locality results: Sufficient to use the instances at t0 and t1

FlowInst
q (t0, t1) : Invq(x(t0))) ∧ Invq(x(t1))) ∧ flowq(t0, t1)).

85

Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Invariant:

φsafe(x1, x2, x3) : x1+x2+x3≤Loverflow ∧ −ǫ≤x1−x2≤ǫ.

We assume that Lf < Loverflow and ǫa < ǫ. .

Ψ is an invariant iff for every mode q ∈ {1, 2, 3, 4}

the formula Fflow(q) is unsatisfiable:

Ψ(x(0))∧Invq(x(0))∧flowq(x , t)∧Invq(x(t))∧¬Ψ(x(t))

and FJump(e) is unsatisfiable for all e ∈ E .

Ilustration: Fflow(2) (invariance under the flow in reaction mode):

Ψ(0) (x1(0)+x2(0)+x3(0) ≤ Loverflow ∧ −ǫ ≤ x1(0)−x2(0) ≤ ǫ)∧

¬Ψ(t) ¬(x1(t)+x2(t)+x3(t) ≤ Loverflow ∧ −ǫ ≤ x1(t)−x2(t) ≤ ǫ)∧

Inv2(0) Lf ≤ x1(0) + x2(0) + x3(0) ≤ Loverflow ∧ x3(0) ≤ max∧

Inv2(t) Lf ≤ x1(t) + x2(t) + x3(t) ≤ Loverflow ∧ x3(t) ≤ max∧

flow2 x1(t)−x1(0) ≤ −dmax·t ∧ x2(t)−x2(0) ≤ −dmax·t ∧

x3(t)−x3(0) ≥ dmin·t ∧ (x1(t)−x1(0))−(x2(t)−x2(0)) = 0 ∧

(x1(t)−x1(0))+(x2(t)−x2(0))+(x3(t)−x3(0)) = 0

For fixed values for Lf , Loverflow – satisfiability check: PTIME.

Parametric version: check satisfiability if Lf <Loverflow ∧ ǫa<ǫ

or generate constraints on the parameters which guarantee (un)satisfiability

86

Other approaches

First-Order Dynamic Logic

Dynamic logic in which the atomic programs contain variables

The KeY System (Bernhard Beckert et al.)

Hybrid Dynamic Logic

Dynamic logic in which the atomic programs contain differential equations

The KeYmaera Verification Tool (Andre Platzer)

(Differential dynamic logic)

87

