
Formal Specification and Verification

Propositional Dynamic Logic 1

15.07.2014

Viorica Sofronie-Stokkermans

Matthias Horbach

e-mail: {sofronie,horbach}@uni-koblenz.de

1

Overview

• Model checking:

Finite transition systems / CTL properties

States are “entities” (no precise description, except for labelling

functions)

No precise description of actions (only → important)

2

Overview

• Model checking:

Finite transition systems / CTL properties

States are “entities” (no precise description, except for labelling

functions)

No precise description of actions (only → important)

Extensions in two possible directions:

• More precise description of the actions/events

- Propositional Dynamic Logic

- Hoare logic

• More precise description of states (and possibly also of actions)

- succinct representation: formulae represent a set of states

- deductive verification

3

Motivation

Example Program: Square

I := 0;

Y := 0;

while I < X do

Y := Y+2*I+1;

I := I+1

od

We would like to prove something like “A✸(terminated ∧ Y=X*X)”.

4

Motivation

Example Program: Square

I := 0;

Y := 0;

while I < X do

Y := Y+2*I+1;

I := I+1

od

l0 l1 l2 l5

l3l4

We would like to prove something like “A✸(terminated ∧ Y=X*X)”.

5

Motivation

Example Program: Square

I := 0;

Y := 0;

while I < X do

Y := Y+2*I+1;

I := I+1

od

l0 l1 l2 l5

l3l4

I:=0 Y:=0 ¬I<X?

I<X?

Y:=Y+2*I+1

I:=I+1

We would like to prove something like “A✸(terminated ∧ Y=X*X)”.

CTL∗ too weak: Transitions carry meaning.

Dynamic Logic: [prog]Y=X*X

6

Motivation

A Simple Programming Language

Logical basis

Typed first-order predicate logic

(Types, variables, terms, formulas, . . .)

Assumption for examples

The signature contains a type Nat and appropriate symbols:

• function symbols 0, s, +, ∗

(terms s(0), s(s(0)), . . . written as 1,2, . . .)

• predicate symbols
.
=,≤,<,≥,>

NOTE: This is a “convenient assumption” not a definition

7

Motivation

Programs

• Assignments: X := t X : variable, t:term

• Test: if B then a else b fi

B: quant.-free formula, a, b: programs

• Loop: while B do a od

B: quantifier-free formula, a: program

• Composition: a; b a, b programs

WHILE is computationally complete

8

Motivation

WHILE: Examples

Compute the square of X and store it in Y

Y := X ∗ X

If X is positive then add one else subtract one

if X > 0 then X := X + 1 else X := X − 1 fi

9

Motivation

WHILE: Example - Square of a Number

Compute the square of X (the complicated way)

Making use of: n2 = 1 + 3 + 5 + · · ·+ (2 ∗ n − 1)

I := 0;

Y := 0;

while I < X do

Y := Y+2*I+1;

I := I+1

od

10

Motivation

WHILE: Operational Semantics

Given

A (fixed) first-order structure A interpreting the function and predicate

symbols in the signature

State

s = (A, β) where β is a variable assignment (i.e. function interpreting the

variables)

11

Motivation

State update

s[e/X] = (A,β[X 7→ e])

with β[X 7→ e](Y) =

e if Y = X

β(Y) otherwise

12

Motivation

Define the relation R(α) as follows (we write s[α]s′ instead of sR(α)s′):

• s[X := t]s′ iff s′ = s[s(t)/X]

• s[if B then α else β fi]s′ iff s |= B and s[α]s′ or s |= ¬B and s[β]s′.

• s[while B do α od]s′ iff there are states s = s0, . . . , st = s′ s.t.

si |= B for 0 ≤ i ≤ t − 1 and st |= ¬B and s0[α]s1, s1[α]s2, . . . , st−1[α]st

• s[α;β]s′ iff there is a state s′′ such that s[α]s′′ and s′′[β]s′

If α is a deterministic program, [α] is a partial function.

13

Motivation

A Different Approach to WHILE

Programs

• X := t (atomic program)

• α;β (sequential composition)

• α ∪ β (non-deterministic choice)

• α∗ (non-deterministic iteration, n times for some n ≥ 0)

• F? (test)

remains in initial state if F is true,

does not terminate if F is false

14

Motivation

Restriction to deterministic programs

Non-deterministic program constructors may only be used in

if B then α else β fi ≡ (B?;α) ∪ ((¬B)?; β)

while B do α od ≡ (B?;α)∗; (¬B)?

15

Motivation

Expressing Program Properties

Logic for expressing properties

Full first-order logic (usually with arithmetic)

Partial correctness assertion (Hoare formula)

{P}α{Q}

Meaning:

If α is started in a state satisfying P and terminates, then its final state

satisfies Q.

Formally:

{P}α{Q} is valid iff for all states s, s′, if s |= P and s[α]s′, then s′ |= Q.

16

Examples

{X > 0}X := X + 1{X > 1}

{even(X)}X := X + 2{even(X)}

where even(X) ≡

E

Z(X = 2 ∗ Z)

{true}αsquare{Y = X ∗ X}

17

Examples

{X > 0}X := X + 1{X > 1}

{even(X)}X := X + 2{even(X)}

where even(X) ≡

E

Z(X = 2 ∗ Z)

{true}αsquare{Y = X ∗ X}

Verification: Use annotation of programs with “invariants”

18

Dynamic Logic

The idea of dynamic logic

• Annotated programs use formulas within programs

• Dynamic Logic uses programs within formulas

• Instead of “assert F” after program segment α, write: [α]F

7→ multi-modal logic

19

Dynamic Logic

Dynamic logic is a language for specifying programming languages.

The original work on dynamic logic is by Vaughan Pratt (1976) and by

David Harel (1979).

20

Propositional Dynamic Logic

Propositional dynamic logic (PDL) is a multi-modal logic with structured

modalities.

For each program α, there is:

– a box-modality [α] and

– a diamond modality 〈α〉.

PDL was developed from first-order dynamic logic by Fischer-Ladner (1979)

and has become popular recently.

Here we consider regular PDL.

21

Propositional Dynamic Logic

Syntax

Prog set of programs

Prog0 ⊆ Prog: set of atomic programs

Π: set of propositional variables

The set of formulae FmaPDL
Prog,Π of (regular) propositional dynamic logic and

the set of programs P0 are defined by simultaneous induction as follows:

22

PDL: Syntax

Formulae:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| p p ∈ Π0 (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| [α]F if α ∈ Prog

| 〈α〉 F if α ∈ Prog

Programs:

α, β, γ ::= α0 α0 ∈ Prog0 (atomic program)

| F? F formula (test)

| α; β (sequential composition)

| α ∪ β (non-deterministic choice)

| α∗ (non-deterministic repetition)

23

Semantics

A PDL structure K = (S ,R(), I) is a multimodal Kripke structure with an

accessibility relation for each atomic program. That is it consists of:

• a non-empty set S of states

• an interpretation R() : Prog0 → S × S of atomic programs that

assigns a transition relation R(α) to each atomic program α

• an interpretation I : Π× S → {0, 1}

24

PDL: Semantics

The interpretation of PDL relative to a PDL structure K = (S ,R(), I)

is defined by extending R() to Prog and extending I to FmaPDL
Prop0

by the

following simultaneously inductive definition:

25

Interpretation of formulae/programs

valK(p, s) = I (p, s) if p ∈ Π

valK(¬F , s) = ¬BoolvalK(F , s)

valK(F ∧ G , s) = valK(F , s) ∧Bool valK(G , s)

valK(F ∨ G , s) = valK(F , s) ∨Bool valK(G , s)

valK(F → G , s) = valK(F , s) →Bool valK(G , s)

valK(F ↔ G , s) = valK(F , s) ↔Bool valK(G , s)

valK([α]F , s) = 1 iff for all t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

valK(〈α〉 F , s) = 1 iff for some t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

R([F?]) = {(s, s) | valK(F , s) = 1}

(F? means: if F then skip else do not terminate)

R(α ∪ β) = R(α) ∪ R(β)

R(α; β) = {(s, t) | there exists u ∈ S s.t.(s, u) ∈ R(α) and (u, t) ∈ R(β)}

R(α∗) = R(α)∗

= {(s, t) | there exist n ≥ 0 and u0, . . . , un ∈ S with

s = u0, t = un , (u0, u1), . . . , (un−1, un) ∈ R(α)}

26

Interpretation of formulae/programs

• (K, s) satisfies F (notation (K, s) |= F) iff valK(F , s) = 1.

• F is valid in K (notation K |= F) iff (K, s) |= F for all s ∈ S .

• F is valid (notation |= F) iff K |= F for all PDL-structures K.

27

Hilbert-style axiom system for PDL
Axioms

(D1) All propositional logic tautologies

(D2) [α](A → B) → ([α]A → [α]B)

(D3) [α](A ∧ B) ↔ [α]A ∧ [α]B

(D4) [α; β]A ↔ [α][β]A

(D5) [α ∪ β]A ↔ [α]A ∧ [β]A

(D6) [A?]B ↔ (A → B)

(D7) [α∗]A ↔ A ∧ [α][α∗]A,

(D8) [α∗](A → [α]A) → (A → [α∗]A)

Inference rules

MP
F F → G

G

Gen
F

[α]F

We will show that PDL is determined by PDL structures, and has the finite model

property.

28

Soundness and Completeness of PDL

Theorem. If the formula F is provable in the inference system for PDL then

F is valid in all PDL structures.

Proof: Induction of the length of the proof, using the following facts:

1. The axioms are valid in every PDL structure. Easy computation.

2. If the premises of an inference rule are valid in a structure K, the

conclusion is also valid in K.

(MP) If K |= F ,K |= F → G then K |= G (follows from the fact that for

every state s of K if (K, s) |= F , (K, s) |= F → G then (K, s) |= G)

(Gen) Assume that K |= F . Then (K, s) |= F for every state s of K.

Let t be a state of K. (K, t) |= [α]F if for all t′ with (t, t′) ∈ R(α) we

have (K, t′) |= F . But under the assumption that K |= F the latter is

always the case. This shows that (K, t) |= [α]F for all t.

29

Summary

Today:

• Motivation: WHILE programs and Hoare triples

• Syntax and semantics of PDL

• Soundness of the axiom system

Next time:

• Completeness and decidability

• A sequent calculus for PDL

30

