
Formal Specification and Verification

29.04.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1



Mathematical foundations

Formal logic:

• Syntax: a formal language (formula expressing facts)

• Semantics: to define the meaning of the language, that is which facts

are valid)

• Deductive system: made of axioms and inference rules to formaly

derive theorems, that is facts that are provable

2



Last time

Propositional classical logic

• Syntax

• Semantics

Models, Validity, and Satisfiability

Entailment and Equivalence

• Checking Unsatisfiability

Truth tables

”Rewriting” using equivalences

Proof systems: clausal/non-clausal

- non-clausal: Hilbert calculus

sequent calculus

- clausal: Resolution
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Today

Propositional classical logic

Proof systems: clausal/non-clausal

- non-clausal: Hilbert calculus

sequent calculus

- clausal: Resolution; DPLL (translation to CNF needed)

- Binary Decision Diagrams
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The DPLL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set N

of clauses), check whether it is satisfiable (and optionally: output one

solution, if it is satisfiable).
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Satisfiability of Clause Sets

A |= N if and only if A |= C for all clauses C in N.

A |= C if and only if A |= L for some literal L ∈ C .
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Partial Valuations

Since we will construct satisfying valuations incrementally,

we consider partial valuations

(that is, partial mappings A : Π → {0, 1}).

We start with an empty valuation and try to extend it

step by step to all variables occurring in N.

If A is a partial valuation, then literals and clauses can be

true, false, or undefined under A.

A clause is true under A if one of its literals is true;

it is false (or “conflicting”) if all its literals are false;

otherwise it is undefined (or “unresolved”).
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Unit Clauses

Observation:

Let A be a partial valuation. If the set N contains a clause C , such

that all literals but one in C are false under A, then the following

properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.
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Pure Literals

One more observation:

Let A be a partial valuation and P a variable that is undefined under

A. If P occurs only positively (or only negatively) in the unresolved

clauses in N, then the following properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

assigns true (false) to P.

P is called a pure literal.
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The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(clause set N, partial valuation A) {

if (all clauses in N are true under A) return true;

elsif (some clause in N is false under A) return false;

elsif (N contains unit clause P) return DPLL(N, A ∪ {P 7→ 1});

elsif (N contains unit clause ¬P) return DPLL(N, A ∪ {P 7→ 0});

elsif (N contains pure literal P) return DPLL(N, A ∪ {P 7→ 1});

elsif (N contains pure literal ¬P) return DPLL(N, A ∪ {P 7→ 0});

else {

let P be some undefined variable in N;

if (DPLL(N, A ∪ {P 7→ 0})) return true;

else return DPLL(N, A ∪ {P 7→ 1});

}

}
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The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with the clause set N and with an empty

partial valuation A.
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The Davis-Putnam-Logemann-Loveland Proc.

In practice, there are several changes to the procedure:

The pure literal check is often omitted (it is too expensive).

The branching variable is not chosen randomly.

The algorithm is implemented iteratively;

the backtrack stack is managed explicitly

(it may be possible and useful to backtrack more than one level).
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DPLL Iteratively

An iterative (and generalized) version:

status = preprocess();

if (status != UNKNOWN) return status;

while(1) {

decide_next_branch();

while(1) {

status = deduce();

if (status == CONFLICT) {

blevel = analyze_conflict();

if (blevel == 0) return UNSATISFIABLE;

else backtrack(blevel); }

else if (status == SATISFIABLE) return SATISFIABLE;

else break;

}

}
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DPLL Iteratively

preprocess()

preprocess the input (as far as it is possible without branching);

return CONFLICT or SATISFIABLE or UNKNOWN.

decide_next_branch()

choose the right undefined variable to branch;

decide whether to set it to 0 or 1;

increase the backtrack level.
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DPLL Iteratively

deduce()

make further assignments to variables (e.g., using the unit clause

rule) until a satisfying assignment is found, or until a conflict is

found, or until branching becomes necessary;

return CONFLICT or SATISFIABLE or UNKNOWN.
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DPLL Iteratively

analyze_conflict()

check where to backtrack.

backtrack(blevel)

backtrack to blevel;

flip the branching variable on that level;

undo the variable assignments in between.
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Branching Heuristics

Choosing the right undefined variable to branch is important for

efficiency, but the branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be recomputed

too frequently.

In general: choose variables that occur frequently.
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The Deduction Algorithm

For applying the unit rule, we need to know the number of literals in

a clause that are not false.

Maintaining this number is expensive, however.
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The Deduction Algorithm

Better approach: “Two watched literals”:

In each clause, select two (currently undefined) “watched” literals.

For each variable P, keep a list of all clauses in which P is watched

and a list of all clauses in which ¬P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses in

which P (or ¬P) is watched and watch another literal (that is true

or undefined) in this clause if possible.

Watched literal information need not be restored upon backtracking.
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Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further

branches.

Method: Learning:

If a conflicting clause is found, use the resolution rule to derive a

new clause and add it to the current set of clauses.

Problem: This may produce a large number of new clauses;

therefore it may become necessary to delete some of them afterwards

to save space.
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Backjumping

Related technique:

non-chronological backtracking (“backjumping”):

If a conflict is independent of some earlier branch, try to skip that

over that backtrack level.
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Restart

Runtimes of DPLL-style procedures depend extremely on the choice

of branching variables.

If no solution is found within a certain time limit, it can be useful to

restart from scratch with another choice of branchings (but learned

clauses may be kept).
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A succinct formulation

State: M||F ,

where:

- M partial assignment (sequence of literals),

some literals are annotated (Ld : decision literal)

- F clause set.
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A succinct formulation

UnitPropagation

M||F ,C ∨ L ⇒ M, L||F ,C ∨ L if M |= ¬C , and L undef. in M

Decide

M||F ⇒ M, Ld ||F if L or ¬L occurs in F , L undef. in M

Fail

M||F ,C ⇒ Fail if M |= ¬C , M contains no decision literals

Backjump

M, Ld ,N||F ⇒ M, L′||F if



























there is some clause C ∨ L′ s.t.:

F |= C ∨ L′,M |= ¬C ,

L′ undefined in M

L′ or ¬L′ occurs in F .
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Example

Assignment: Clause set:

∅ ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1
d ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1
dP2 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1
dP2P3

d ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1
dP2P3

dP4 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1
dP2P3

dP4P5
d ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1
dP2P3

dP4P5
d¬P6 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Backtrack)

P1
dP2P3

dP4¬P5 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ...
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DPLL with learning

The DPLL system with learning consists of the four transition rules of the

Basic DPLL system, plus the following two additional rules:

Learn

M||F ⇒ M||F ,C if all atoms of C occur in F and F |= C

Forget

M||F ,C ⇒ M||F if F |= C

In these two rules, the clause C is said to be learned and forgotten,

respectively.
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Further Information

The ideas described so far heve been implemented in the SAT checker

Chaff.

Further information:

Lintao Zhang and Sharad Malik:

The Quest for Efficient Boolean Satisfiability Solvers,

Proc. CADE-18, LNAI 2392, pp. 295–312, Springer, 2002.
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Binary Decision Diagrams

Formulae ↔ Boolean functions

F (n Prop.Var) 7→ fF : {0, 1}n → {0, 1}

Binary decision trees:

x

y

1

y

1 00

0 1

0 1 0 1

x

y

1

y

0 00

0 1

0 1 0 1
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Binary Decision Diagrams

Formulae ↔ Boolean functions

F (n Prop.Var) 7→ fF : {0, 1}n → {0, 1}

Binary decision trees:

x

y

1

y

1 00

0 1

0 1 0 1

x

y

1

y

0 00

0 1

0 1 0 1

- exactly as inefficient as truth tables (2n+1 − 1 nodes if n prop.vars.)

- optimization possible: remove redundancies
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Binary Decision Diagrams

With every function f : {0, 1}n → {0, 1} we can associate a decision tree

With every decision tree T we can associate a Boolean function:

P

1 1 00

0 1

0 1 0 1

root(T)

right(T)

Q Q

left(T)

Sei A : {P1, . . . ,Pn} → {0, 1}, mit A(Pi ) = ai

P marks the root of T :

if A(P) = 0: fT (a) := fleft(T )(a)

is A(P) = 1: fT (a) := fright(T )(a)

0 marks the root of T : fT (a) := 0

1 marks the root of T : fT (a) := 1
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Binary Decision Trees

f : {0, 1}n → {0, 1} 7→

P

PP

P

P P

0 1

P

P P

0 1
P

P P

0 1
P

P P

P
0 1

0 1

0 1

0 1 10

a a a a1 2
n

2−1 2
n

1

2 2

3 3 3 3

n n n n n n

n−1 n−1 n−1

f (0...0) f (0...1) . . . f (1...0) f (1...1)
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Binary Decision Diagrams

Formulae ↔ Boolean functions

F (n Prop.Var) 7→ fF : {0, 1}n → {0, 1}

Binary decision trees:

x

y

1

y

0 00

0 1

0 1 0 1

- exactly as inefficient as truth tables (2n+1 − 1 nodes if n prop.vars.)

- optimization possible: remove redundancies
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Binary Decision Diagrams

Optimization: remove redundancies

1. remove duplicate leaves

2. remove unnecessary tests

3. remove duplicate nodes
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Binary Decision Diagrams

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

x

y

1

y

0 00

0 1

0 1 0 1
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Binary Decision Diagrams

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

x

y

1

y

0 00

0 1

0 1 0 1

x

y

1

y

0 00

0 1

0 1 0 1
0

1
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Binary Decision Diagrams

2. remove unnecessary tests

x

y

1

y

0 00

0 1

0 1 0 1
0

1
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Binary Decision Diagrams

2. remove unnecessary tests

x

y

1

y

0 00

0 1

0 1 0 1
0

1

0

x

y

1

0

0 1

1
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Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011
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Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y
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Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0
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Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0

y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0
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Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0 1

0 0
1

0 1

01

0

1

y y

z

x

0 1

1

x

0

0
1

0 1

0

1 0

1

y y

z

x

0 1

1

0
1

0 1

0

0

1
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Operations with BDDs

f 7→ Bf (BDD associated with f )

g 7→ Bg (BDD associated with g)

BDD for f ∧ g : replace all 1-leaves in Bf with Bg

BDD for f ∨ g : replace all 0-leaves in Bf with Bg

BDD for ¬f : replace all 1-leaves in Bf with 0-leaves and all

0-leaves with 1 leaves.
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Binary Decision Diagrams

Binary decision diagram (BDD): finite directed acyclic graph with:

• a unique initial node

• terminal nodes marked with 0 or 1

• non-terminal nodes marked with propositional variables

• in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.
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Binary Decision Diagrams

Binary decision diagram (BDD): finite directed acyclic graph with:

• a unique initial node

• terminal nodes marked with 0 or 1

• non-terminal nodes marked with propositional variables

• in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.

Problem: Variables may occur several times on a path.

Solution: Ordered BDDs.
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Ordered BDDs

[P1, . . . ,Pn] ordered list of variables (without repetitions)

Let B be a BDD with variables {P1, . . . ,Pn}

B has the order [P1, . . . ,Pn]

if for every path v1 → v2 → · · · → vm in B,

if - i < j ,

- vi is marked with Pki

- vj ist marked with Pkj

then ki < kj .

A ordered BDD (Notation: OBDD) is a BDD which has an order, for a

certain ordered list of variables.
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Reduced OBDDs

Let [P1, . . . ,Pn] be an order on variables.

The reduced OBDD, which represents a given function f is unique.

Theorem:

Let B1, B2 be two reduced OBDDs with the same variable ordering.

If B1 and B2 represent the same function, then B1 and B2 are equal.

OBDDs have a canonical form, namely the reduced OBDD.
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The role of the ordering on variables

Example (P1 ∨ P2) ∧ (P3 ∨ P4) ∧ · · · ∧ (P2n−1 ∨ P2n)

[P1,P2, . . . ,P2n−1,P2n]: OBDD with 2n + 2 nodes

[P1,P3, . . . ,P2n−1,P2, . . . ,P2n]: OBDD with 2n+1 nodes
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Advantages of canonical representations

• Absence of redundant variables

If the value of f does not depend on the i-argument (Pi )
then no reduced OBDD contains the variable Pi

• Equivalence test

Fi 7→ fi 7→ Bi (OBDDs with compatible variable ordering), i = 1, 2

Reduce Bi , i = 1, 2. F1 ≡ F2 iff. B1 and B2 identical.
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Advantages of canonical representations

• Validity test

F 7→ f 7→ B (OBDD)

F valid iff its reduced OBDD is B1 := 1

• Entailment test

F |= G iff the reduced OBDD for F ∧ ¬G is B0 := 0

• Satisfiability test

F satisfiable iff its reduced OBDD is not B0.
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Operations with OBDDs

• Reduce

Apply reduction steps 1–3

• Apply

Boolean operations

• Restrict

Compute OBDD for F [0/Pi ] and F [1/Pi ]

• Exists

Compute OBDD for

E

PiF (P1, . . . ,Pn)
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Operations with OBDDs

• Reduce

Apply reduction steps 1–3

• Apply

Boolean operations

• Restrict

Compute OBDD for F [0/Pi ] and F [1/Pi ]

• Exists

Compute OBDD for

E

PiF (P1, . . . ,Pn)
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Reduce

remove redundancies

1. remove duplicate leaves

2. remove unnecessary tests

3. remove duplicate nodes
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Reduce

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

x

y

1

y

0 00

0 1

0 1 0 1
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Reduce

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

x

y

1

y

0 00

0 1

0 1 0 1

x

y

1

y

0 00

0 1

0 1 0 1
0

1
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Reduce

2. remove unnecessary tests

x

y

1

y

0 00

0 1

0 1 0 1
0

1
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Reduce

2. remove unnecessary tests

x

y

1

y

0 00

0 1

0 1 0 1
0

1

0

x

y

1

0

0 1

1

57



Reduce

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011
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Reduce

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1
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x

0 1

0 0 0
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0 1
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y y y

z

x

0 1
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0 0 0
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0 1

011

y
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Reduce

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1
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1 1

0 1

011

y y y
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1
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1 0
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Reduce

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
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0 1
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y y y
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Reduce

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1
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Reduce

The algorithm reduce traverses an OBDD B layer by layer in a bottom-up

fashion, beginning with the terminal nodes.

In traversing B, it assigns an integer label id(n) to each node n of B, in

such a way that the subOBDDs with root nodes n and m denote the same

boolean function iff, id(n) = id(m).
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Reduce

Terminal nodes:

Since reduce starts with the layer of terminal nodes, it assigns the first

label (say #0) to the first 0-node it encounters. All other terminal 0-nodes

denote the same function as the first 0-node and therefore get the same

label (compare with reduction 1).

Similarly, the 1-nodes all get the next label, say #1.
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Reduce

Non-terminal nodes

Now let us inductively assume that reduce has already assigned integer

labels to all nodes of a layer > i (i.e. all terminal nodes and Pj -nodes with

j > i).

We describe how nodes of layer i (i.e. Pi -nodes) are being handled.

n 7→ lo(n) node reached on branch labelled with 0

hi(n) node reached on branch labelled with 1

Given an Pi -node n, there are three ways in which it may get its label:

• If id(lo(n)) = id(hi(n)), we set id(n) to be that label (reduction 2)

• If there is another node m s.t. n and m have same variable Pi ,

and id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), then we set

id(n) := id(m) (reduction 3)

• Otherwise, we set id(n) to the next unused integer label.
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