
Formal Specification and Verification

6.05.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1



Binary Decision Diagrams

Formulae ↔ Boolean functions

F (n Prop.Var) 7→ fF : {0, 1}n → {0, 1}

Binary decision trees:

x

y

1

y

1 00

0 1

0 1 0 1

x

y

1

y

0 00

0 1

0 1 0 1

2



Binary Decision Diagrams

Formulae ↔ Boolean functions

F (n Prop.Var) 7→ fF : {0, 1}n → {0, 1}

Binary decision trees:

x

y

1

y

1 00

0 1

0 1 0 1

x

y

1

y

0 00

0 1

0 1 0 1

- exactly as inefficient as truth tables (2n+1 − 1 nodes if n prop.vars.)

- optimization possible: remove redundancies

3



Binary Decision Diagrams

Optimization: remove redundancies

1. remove duplicate leaves

2. remove unnecessary tests

3. remove duplicate nodes

4



Binary Decision Diagrams

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

x

y

1

y

0 00

0 1

0 1 0 1

5



Binary Decision Diagrams

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

x

y

1

y

0 00

0 1

0 1 0 1

x

y

1

y

0 00

0 1

0 1 0 1
0

1

6



Binary Decision Diagrams

2. remove unnecessary tests

x

y

1

y

0 00

0 1

0 1 0 1
0

1

7



Binary Decision Diagrams

2. remove unnecessary tests

x

y

1

y

0 00

0 1

0 1 0 1
0

1

0

x

y

1

0

0 1

1

8



Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

9



Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y

10



Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0

11



Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0

y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0

12



Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0 1

0 0
1

0 1

01

0

1

y y

z

x

0 1

1

x

0

0
1

0 1

0

1 0

1

y y

z

x

0 1

1

0
1

0 1

0

0

1

13



Operations with BDDs

f 7→ Bf (BDD associated with f )

g 7→ Bg (BDD associated with g)

BDD for f ∧ g : replace all 1-leaves in Bf with Bg

BDD for f ∨ g : replace all 0-leaves in Bf with Bg

BDD for ¬f : replace all 1-leaves in Bf with 0-leaves and all

0-leaves with 1 leaves.

14



Binary Decision Diagrams

Binary decision diagram (BDD): finite directed acyclic graph with:

• a unique initial node

• terminal nodes marked with 0 or 1

• non-terminal nodes marked with propositional variables

• in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.

15



Binary Decision Diagrams

Binary decision diagram (BDD): finite directed acyclic graph with:

• a unique initial node

• terminal nodes marked with 0 or 1

• non-terminal nodes marked with propositional variables

• in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.

Problem: Variables may occur several times on a path.

Solution: Ordered BDDs.

16



Ordered BDDs

[P1, . . . ,Pn] ordered list of variables (without repetitions)

Let B be a BDD with variables {P1, . . . ,Pn}

B has the order [P1, . . . ,Pn]

if for every path v1 → v2 → · · · → vm in B,

if - i < j ,

- vi is marked with Pki

- vj ist marked with Pkj

then ki < kj .

A ordered BDD (Notation: OBDD) is a BDD which has an order, for a

certain ordered list of variables.

17



Reduced OBDDs

Let [P1, . . . ,Pn] be an order on variables.

The reduced OBDD, which represents a given function f is unique.

Theorem:

Let B1, B2 be two reduced OBDDs with the same variable ordering.

If B1 and B2 represent the same function, then B1 and B2 are equal.

OBDDs have a canonical form, namely the reduced OBDD.

18



Advantages of canonical representations

• Absence of redundant variables

If the value of f does not depend on the i-argument (Pi )
then no reduced OBDD contains the variable Pi

• Equivalence test

Fi 7→ fi 7→ Bi (OBDDs with compatible variable ordering), i = 1, 2

Reduce Bi , i = 1, 2. F1 ≡ F2 iff. B1 and B2 identical.

19



Advantages of canonical representations

• Validity test

F 7→ f 7→ B (OBDD)

F valid iff its reduced OBDD is B1 := 1

• Entailment test

F |= G iff the reduced OBDD for F ∧ ¬G is B0 := 0

• Satisfiability test

F satisfiable iff its reduced OBDD is not B0.

20



Operations with OBDDs

• Reduce

Apply reduction steps 1–3

• Apply

Boolean operations

• Restrict

Compute OBDD for F [0/Pi ] and F [1/Pi ]

• Exists

Compute OBDD for

E

PiF (P1, . . . ,Pn)

21



Operations with OBDDs

• Reduce

Apply reduction steps 1–3

• Apply

Boolean operations

• Restrict

Compute OBDD for F [0/Pi ] and F [1/Pi ]

• Exists

Compute OBDD for

E

PiF (P1, . . . ,Pn)

22



Reduce

remove redundancies

1. remove duplicate leaves

2. remove unnecessary tests

3. remove duplicate nodes

23



Reduce

The algorithm reduce traverses an OBDD B layer by layer in a bottom-up

fashion, beginning with the terminal nodes.

In traversing B, it assigns an integer label id(n) to each node n of B, in

such a way that the subOBDDs with root nodes n and m denote the same

boolean function iff, id(n) = id(m).

24



Reduce

Terminal nodes:

Since reduce starts with the layer of terminal nodes, it assigns the first

label (say #0) to the first 0-node it encounters. All other terminal 0-nodes

denote the same function as the first 0-node and therefore get the same

label (compare with reduction 1).

Similarly, the 1-nodes all get the next label, say #1.

25



Reduce

Non-terminal nodes

Now let us inductively assume that reduce has already assigned integer

labels to all nodes of a layer > i (i.e. all terminal nodes and Pj -nodes with

j > i).

We describe how nodes of layer i (i.e. Pi -nodes) are being handled.

n 7→ lo(n) node reached on branch labelled with 0

hi(n) node reached on branch labelled with 1

Given an Pi -node n, there are three ways in which it may get its label:

• If id(lo(n)) = id(hi(n)), we set id(n) to be that label (reduction 2)

• If there is another node m s.t. n and m have same variable Pi ,

and id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), then we set

id(n) := id(m) (reduction 3)

• Otherwise, we set id(n) to the next unused integer label.

26



Operations with OBDDs

• Reduce

Apply reduction steps 1–3

• Apply

Boolean operations

• Restrict

Compute OBDD for F [0/Pi ] and F [1/Pi ]

• Exists

Compute OBDD for

E

PiF (P1, . . . ,Pn)

27



Reminder: BDDs

f 7→ Bf (BDD associated with f )

g 7→ Bg (BDD associated with g)

BDD for f ∧ g : replace all 1-leaves in Bf with Bg

BDD for f ∨ g : replace all 0-leaves in Bf with Bg

BDD for ¬f : replace all 1-leaves in Bf with 0-leaves and all 0-leaves with 1

leaves.

28



Reminder: BDDs

f 7→ Bf (BDD associated with f )

g 7→ Bg (BDD associated with g)

BDD for f ∧ g : replace all 1-leaves in Bf with Bg

BDD for f ∨ g : replace all 0-leaves in Bf with Bg

BDD for ¬f : replace all 1-leaves in Bf with 0-leaves and all 0-leaves with 1

leaves.

If applied to OBDDs, the resulting BDD is not ordered!

29



Apply

Idea: Use the Shannon expansion for F .

F ≡ (¬P ∧ F [0/P]) ∨ (P ∧ F [1/P])

The function apply is based on the Shannon expansion for FopG :

FopG = (¬Pi ∧ (F [0/Pi ]opG [0/Pi ])) ∨ (Pi ∧ (F [1/Pi ]opG [1/Pi ])).

30



Apply

This is used as a control structure of apply which proceeds from the roots

of BF and BG downwards to construct nodes of the OBDD BFopG .

Let rf be the root node of BF and rg the root node of BG .

1. If both rf , rg are terminal nodes with labels lf and lg , respectively (0

or 1), we compute the value lf oplg and let the resulting OBDD be B0

if the value is 0 and B1 otherwise.

31



Apply

This is used as a control structure of apply which proceeds from the roots

of BF and BG downwards to construct nodes of the OBDD BFopG .

Let rf be the root node of BF and rg the root node of BG .

In the remaining cases, at least one of the root nodes is a non-terminal.

2. Suppose that both root nodes are Pi -nodes.

Then we create an Pi -node n with

- the edge labelled with 0 to apply(op, lo(rf ), lo(rg ))

- the edge labelled with 1 to apply(op, hi(rf ), hi(rg ))

32



Apply

This is used as a control structure of apply which proceeds from the roots

of BF and BG downwards to construct nodes of the OBDD BFopG .

Let rf be the root node of BF and rg the root node of BG .

3. If rf is a Pi -node, but rg is a terminal node or a Pj -node with j > i ,

then we know that there is no Pi -node in BG (because the two OBDDs

have a compatible ordering of boolean variables).

Thus, G is independent of Pi (G ≡ G [0/Pi ] ≡ G [1/Pi ]).

Therefore, we create a Pi -node n with: - the 0-edge to

apply(op, lo(rf ), rg ) and

- the 1-edge to apply(op, hi(rf ), rg ).

4. The case in which rg is a non-terminal, but rf is a terminal or a

Pj -node with j > i , is handled symmetrically to case 3.

33



Apply

The result of this procedure might not be reduced; therefore apply finishes

by calling the function reduce on the OBDD it constructed.

34



Restrict

Given an OBDD BF representing a boolean formula F , we need an algorithm

restrict such that:

– restrict(0,P,BF ) computes the reduced OBDD for F [0/P] using the same

variable ordering as BF .

The algorithm works as follows.

For each node n labelled with P, incoming edges are redirected to lo(n)

and n is removed.

Then we call reduce on the resulting OBDD.

The call restrict(1,P,BF ) proceeds similarly, only we now redirect incoming

edges to hi(n).

35



Operations with OBDDs

• Reduce

Apply reduction steps 1–3

• Apply

Boolean operations

• Restrict

Compute OBDD for F [0/Pi ] and F [1/Pi ]

• Exists

Compute OBDD for

E

PiF (P1, . . . ,Pn)

36



Exists

A boolean function can be thought of as putting a constraint on the values

of its argument variables.

It is useful to be able to express the relaxation of the constraint on a subset

of the variables concerned.

To allow this, we write
E

P.F for the boolean function F with the constraint

on P relaxed.

Formally,

E

P.F is defined as F [0/P] ∨ F [1/P]

that is,

E

P.F is true if F could be made true by putting P to 0 or to 1.

37



Exists

Formally,

E

P.F is defined as F [0/P] ∨ F [1/P]

that is,

E

P.F is true if F could be made true by putting P to 0 or to 1.

Therefore the exists algorithm can be implemented in terms of the

algorithms apply and restrict as:

exists(P, F ) := apply(∨, restrict(0,P,BF ), restrict(1,P,BF ))

38



Limitations of Propositional Logic

• Fixed, finite number of objects

Cannot express: let G be group with arbitrary number of elements

• No functions or relations with arguments

Can express: finite function/relation table pij

Cannot express: properties of function/relation on all arguments,

e.g., + is associative

• Static interpretation

Programs change value of their variables, e.g., via assignment, call,

etc.

Propositional formulas look at one single interpretation at a time

39



Beyond the Limitations of Propositional Logic

• First order logic

(+ functions)

• Temporal logic

(+ computations)

• Dynamic logic

(+ computations + functions)

40



Part 2: First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive

(e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

41



2.1 Syntax

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols (domain-independent)

⇒ Boolean combinations, quantifiers

42



Signature

A signature

Σ = (Ω,Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0,

written f /n,

• Π is a set of predicate symbols p with arity m ≥ 0,

written p/m.

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

We use letters P, Q, R, S , to denote propositional variables.

43



Signature

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in programming

languages).

Most results established for one-sorted signatures extend in a natural way

to many-sorted signatures.

44



Many-sorted Signature

A many-sorted signature

Σ = (S , Ω, Π),

fixes an alphabet of non-logical symbols, where

• S is a set of sorts,

• Ω is a set of function symbols f with arity a(f ) = s1 . . . sn → s,

• Π is a set of predicate symbols p with arity a(p) = s1 . . . sm

where s1, . . . , sn, sm, s are sorts.

45



Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.

46



Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.

Many-sorted case:

We assume that for every sort s ∈ S , Xs is a given countably infinite set of

symbols which we use for (the denotation of) variables of sort s.

47



Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (t1, ..., tn) , f /n ∈ Ω (functional term)

By TΣ(X ) we denote the set of Σ-terms (over X ).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

48



Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (t1, ..., tn) , f /n ∈ Ω (functional term)

By TΣ(X ) we denote the set of Σ-terms (over X ).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

Many-sorted case:

a variable x ∈ Xs is a term of sort s

if a(f ) = s1 . . . sn → s, and ti are terms of sort si , i = 1, . . . , n then

f (t1, ..., tn) is a term of sort s.

49



Terms

In other words, terms are formal expressions with well-balanced brackets

which we may also view as marked, ordered trees.

The markings are function symbols or variables.

The nodes correspond to the subterms of the term.

A node v that is marked with a function symbol f of arity n has exactly n

subtrees representing the n immediate subterms of v .

50



Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.

51



Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.

Many-sorted case:

If a(p) = s1 . . . sm, we require that ti is a term of sort si for i = 1, . . . ,m.

52



Literals

L ::= A (positive literal)

| ¬A (negative literal)

53



Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)

54



General First-Order Formulas

FΣ(X ) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

|

A

xF (universal quantification)

|

E

xF (existential quantification)

55



Notational Conventions

We omit brackets according to the following rules:

• ¬ >p ∧ >p ∨ >p → >p ↔

(binding precedences)

• ∨ and ∧ are associative and commutative

• → is right-associative

Qx1, . . . , xn F abbreviates Qx1 . . .Qxn F .

56



Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator

precedences.

Examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u), +(t, v))

−s for −(s)

0 for 0()

57



Example: Peano Arithmetic

Signature:

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

A

x , y(x ≤ y ↔

E

z(x + z ≈ y))

E

x

A

y(x + y ≈ y)

A

x , y(x ∗ s(y) ≈ x ∗ y + x)

A

x , y(s(x) ≈ s(y) → x ≈ y)

A

x

E

y(x < y ∧ ¬

E

z(x < z ∧ z < y))

58



Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can

be defined in first-order logic with equality just with the help of +. The

first formula defines ≤, while the second defines zero. The last formula,

respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below)

reintroduces the “redundant” symbols.

Consequently there is a trade-off between the complexity of the

quantification structure and the complexity of the signature.

59



Example: Specifying LISP lists

Signature:

ΣLists = (ΩLists, ΠLists)

ΩLists = {car/1, cdr/1, cons/2}

ΠLists = ∅

Examples of formulae:

A

x , y car(cons(x , y)) ≈ x

A

x , y cdr(cons(x , y)) ≈ y

A

x cons(car(x), cdr(x)) ≈ x

60



Many-sorted signatures

Example:

Signature

S = {array, index, element} set of sorts

Ω = {read, write}

a(read) = array × index → element

a(write) = array× index× element → array

Π = ∅

X = {Xs | s ∈ S}

Examples of formulae:

A

x : array

A

i : index

A

j : index (i ≈ j → write(x , i , read(x , j)) ≈ x)

A

x : array

A

y : array (x ≈ y ↔

A

i : index (read(x , i) ≈ read(y , i)))

61


