
Formal Specification and Verification

Classical logic (4)

13.05.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Limitations of Propositional Logic

• Fixed, finite number of objects

Cannot express: let G be group with arbitrary number of elements

• No functions or relations with arguments

Can express: finite function/relation table pij

Cannot express: properties of function/relation on all arguments,

e.g., + is associative

• Static interpretation

Programs change value of their variables, e.g., via assignment, call,

etc.

Propositional formulas look at one single interpretation at a time

2

Beyond the Limitations of Propositional Logic

• First order logic

(+ functions)

• Temporal logic

(+ computations)

• Dynamic logic

(+ computations + functions)

3

Beyond the Limitations of Propositional Logic

• First order logic

(+ functions)

• Temporal logic

(+ computations)

• Dynamic logic

(+ computations + functions)

4

Part 2: First-Order Logic

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols (domain-independent)

⇒ Boolean combinations, quantifiers

5

Signature

A signature Σ = (Ω,Π), fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0 (written f /n)

• Π is a set of predicate symbols p with arity m ≥ 0 (written p/m)

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

Many-sorted Signature A many-sorted signature Σ = (S , Ω,Π), fixes an

alphabet of non-logical symbols, where

• S is a set of sorts,

• Ω is a set of function symbols f with arity a(f) = s1 . . . sn → s,

• Π is a set of predicate symbols p with arity a(p) = s1 . . . sm

where s1, . . . , sn, sm, s are sorts.

6

Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.

Many-sorted case:

We assume that for every sort s ∈ S , Xs is a given countably infinite set of

symbols which we use for (the denotation of) variables of sort s.

7

Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (t1, ..., tn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

Many-sorted case:

a variable x ∈ Xs is a term of sort s

if a(f) = s1 . . . sn → s, and ti are terms of sort si , i = 1, . . . , n then

f (t1, ..., tn) is a term of sort s.

8

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.

Many-sorted case:

If a(p) = s1 . . . sm, we require that ti is a term of sort si for i = 1, . . . ,m.

9

Literals, Clauses

Literals

L ::= A (positive literal)

| ¬A (negative literal)

Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)

10

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

|

A

xF (universal quantification)

|

E

xF (existential quantification)

11

Example: Peano Arithmetic

Signature:

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

A

x , y(x ≤ y ↔

E

z(x + z ≈ y))

E

x

A

y(x + y ≈ y)

A

x , y(x ∗ s(y) ≈ x ∗ y + x)

A

x , y(s(x) ≈ s(y) → x ≈ y)

A

x

E

y(x < y ∧ ¬

E

z(x < z ∧ z < y))

12

Example: Specifying LISP lists

Signature:

ΣLists = (ΩLists, ΠLists)

ΩLists = {car/1, cdr/1, cons/2}

ΠLists = ∅

Examples of formulae:

A

x , y car(cons(x , y)) ≈ x

A

x , y cdr(cons(x , y)) ≈ y

A

x cons(car(x), cdr(x)) ≈ x

13

Many-sorted signatures

Example:

Signature

S = {array, index, element} set of sorts

Ω = {read, write}

a(read) = array × index → element

a(write) = array× index× element → array

Π = ∅

X = {Xs | s ∈ S}

Examples of formulae:

A

x : array

A

i : index

A

j : index (i ≈ j → write(x , i , read(x , j)) ≈ x)

A

x : array

A

y : array (x ≈ y ↔

A

i : index (read(x , i) ≈ read(y , i)))

14

Bound and Free Variables

In QxF , Q ∈ {

E

,

A

}, we call F the scope of the quantifier Qx .

An occurrence of a variable x is called bound, if it is inside the scope of a

quantifier Qx .

Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential

forms.

Formulas without variables are called ground.

15

Bound and Free Variables

Example:

A

scope
︷ ︸︸ ︷

y (

A

scope
︷ ︸︸ ︷

x p(x) → q(x , y))

The occurrence of y is bound, as is the first occurrence of x . The second

occurrence of x is a free occurrence.

16

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs

in all inference systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by

codom(σ).

17

Substitutions

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi

pairwise distinct, and then denote the mapping

[s1/x1, . . . , sn/xn](y) =

si , if y = xi

y , otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =

t, if y = x

σ(y), otherwise

18

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by

structural induction over the syntactic structure of t or F by the equations

depicted on the next page.

In the presence of quantification it is surprisingly complex:

We need to make sure that the (free) variables in the codomain of σ are not

captured upon placing them into the scope of a quantifier Qy , hence the

bound variable must be renamed into a “fresh”, that is, previously unused,

variable z.

19

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρGσ) ; for each binary connective ρ

(Qx F)σ = Qz (F σ[x 7→ z]) ; with z a fresh variable

20

2.2 Semantics

To give semantics to a logical system means to define a notion of truth for

the formulas. The concept of truth that we will now define for first-order

logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values

“true” and “false” denoted by 1 and 0, respectively.

21

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra and

its universe.

By Σ− Alg we denote the class of all Σ-algebras.

22

Many-sorted Structures

A many-sorted Σ-algebra (also called Σ-interpretation or Σ-structure),

where Σ = (S , Ω, Π) is a triple

A=({Us}s∈S , (fA:Us1×. . .×Usn→Us) f∈Ω,
a(f)=s1...sn→s

(pA:Us1× . . .×Usm→{0, 1}) p∈Π
a(p)=s1...sm

)

where U 6= ∅ is a set, called the universe of A.

23

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A),

is a map β : X → A.

24

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A),

is a map β : X → A.

Many-sorted case:

β = {βs}s∈S , βs : Xs → Us

25

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X) → A

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f /n ∈ Ω

26

Value of a Term in A with Respect to β

In the scope of a quantifier we need to evaluate terms with respect to

modified assignments. To that end, let β[x 7→ a] : X → A, for x ∈ X and

a ∈ A, denote the assignment

β[x 7→ a](y) :=

a if x = y

β(y) otherwise

27

Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(p(s1, . . . , sn)) = pA(A(β)(s1), . . . ,A(β)(sn))

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F) = 1 ⇔ A(β)(F) = 0

A(β)(FρG) = Bρ(A(β)(F),A(β)(G))

with Bρ the Boolean function associated with ρ

A(β)(

A

xF) = min
a∈U

{A(β[x 7→ a])(F)}

A(β)(

E

xF) = max
a∈U

{A(β[x 7→ a])(F)}

28

Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : UN → UN sN(n) = n + 1

+N : U2
N
→ UN +N(n,m) = n +m

∗N : U2
N
→ UN ∗N(n,m) = n ∗m

≤N: U
2
N
→ {0, 1} ≤N (n,m) = 1 iff n less than or equal to m

<N: U
2
N
→ {0, 1} ≤N (n,m) = 1 iff n less than m

Note that N is just one out of many possible ΣPA-interpretations.

29

Example

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(
A

x , y(x + y ≈ y + x)) = 1

N(β)(

A

z z ≤ y) = 0

N(β)(

A

x

E

y x < y) = 1

30

2.3 Models, Validity, and Satisfiability

F is valid in A under assignment β:

A,β |= F :⇔ A(β)(F) = 1

F is valid in A (A is a model of F):

A |= F :⇔ A,β |= F , for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A,β |= F .

Otherwise F is called unsatisfiable.

31

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written

F |= G

:⇔ for all A ∈ Σ-alg and β ∈ X → UA,

whenever A,β |= F then A,β |= G .

F and G are called equivalent

:⇔ for all A ∈ Σ-alg und β ∈ X → UA we have

A,β |= F ⇔ A,β |= G .

32

Entailment and Equivalence

Proposition 2.6:

F entails G iff (F → G) is valid

Proposition 2.7:

F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N |= F

:⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A,β |= G , for all G ∈ N, then A,β |= F .

33

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained

by the following proposition.

Proposition 2.8:

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient

to design a checker for unsatisfiability.

Q: In a similar way, entailment N |= F can be reduced to unsatisfiability.

How?

34

Algorithmic Problems

Validity(F): |= F ?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F?

Solve(A,F): find an assignment β such that A,β |= F

Solve(F): find a substitution σ such that |= Fσ

Abduce(F): find G with “certain properties” such that G

entails F

35

Decidability/Undecidability

In 1931, Gödel published his incompleteness theorems in

“Über formal unentscheidbare Sätze der

Principia Mathematica und verwandter Systeme”

(in English “On Formally Undecidable Propositions of

Principia Mathematica and Related Systems”).

He proved for any computable axiomatic system that is powerful

enough to describe the arithmetic of the natural numbers (e.g. the

Peano axioms or Zermelo-Fraenkel set theory with the axiom of

choice), that:

• If the system is consistent, it cannot be complete.

• The consistency of the axioms cannot be proven within the

system.

36

Decidability/Undecidability

These theorems ended a half-century of attempts, beginning with the

work of Frege and culminating in Principia Mathematica and Hilbert’s

formalism, to find a set of axioms sufficient for all mathematics.

The incompleteness theorems also imply that not all mathematical

questions are computable.

37

Consequences of Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas.

(One can easily encode Turing machines in most signatures.)

2. For each signature Σ, the set of valid Σ-formulas is

recursively enumerable.

(This is proved by giving complete deduction systems.)

3. For Σ = ΣPA and N∗ = (N, 0, s, +, ∗), the theory Th(N∗) is

not recursively enumerable.

These undecidability results motivate the study of subclasses of

formulas (fragments) of first-order logic

Q: Can you think of any fragments of first-order logic for which

validity is decidable?

38

Some Decidable Fragments/Problems

Validity/Satisfiability/Entailment: Some decidable fragments:

• Variable-free formulas without equality:

satisfiability is NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive

atom): entailment is decidable in linear time.

• Monadic class: no function symbols, all predicates unary;

validity is NEXPTIME-complete.

• Q: Other decidable fragments of FOL (with variables)?

Which methods for proving decidability?

Decidable problems.

Finite model checking is decidable in time polynomial in the size of

the structure and the formula.

39

Calculi

There exist Hilbert style calculi and sequent calculi for first-order logic.

Checking satisfiability of formulae:

• Resolution

• Semantic tableaux

Verification: Logical theories

40

Theory of a Structure

Let A ∈ Σ-alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X) | A |= G}

Problem of axiomatizability:

For which structures A can one axiomatize Th(A), that is, can one write

down a formula F (or a recursively enumerable set F of formulas) such that

Th(A) = {G | F |= G}?

Analogously for sets of structures.

41

Two Interesting Theories

Let ΣPres = ({0/0, s/1,+/2}, ∅) and Z+ = (Z, 0, s, +) its standard

interpretation on the integers.

Th(Z+) is called Presburger arithmetic (M. Presburger, 1929).

(There is no essential difference when one, instead of Z, considers the

natural numbers N as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS,

16(3):323–332, 1978), and in 2EXPSPACE, using automata-theoretic

methods (and there is a constant c ≥ 0 such that Th(Z+) 6∈ NTIME(22
cn
)).

42

Two Interesting Theories

However, N∗ = (N, 0, s, +, ∗), the standard interpretation of

ΣPA = ({0/0, s/1,+/2, ∗/2}, ∅), has as theory the so-called

Peano arithmetic which is undecidable, not even recursively

enumerable.

Note: The choice of signature can make a big difference with

regard to the computational complexity of theories.

43

Logical theories

Syntactic view

first-order theory: given by a set F of (closed) first-order Σ-formulae.

the models of F : Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view

given a class M of Σ-algebras

the first-order theory of M: Th(M) = {G ∈ FΣ(X) closed | M |= G}

44

Theories

F set of (closed) first-order formulae

Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

M class of Σ-algebras

Th(M) = {G ∈ FΣ(X) closed | M |= G}

Th(Mod(F)) the set of formulae true in all models of F

represents exactly the set of consequences of F

45

Theories

F set of (closed) first-order formulae

Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

M class of Σ-algebras

Th(M) = {G ∈ FΣ(X) closed | M |= G}

Th(Mod(F)) the set of formulae true in all models of F

represents exactly the set of consequences of F

Note: F ⊆ Th(Mod(F)) (typically strict)

M ⊆ Mod(Th(M)) (typically strict)

46

Examples

1. Groups

Let Σ = ({e/0, ∗/2, i/1}, ∅)

Let F consist of all (universally quantified) group axioms:

A

x , y , z x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z
A

x x ∗ i(x) ≈ e ∧ i(x) ∗ x ≈ e

A

x x ∗ e ≈ x ∧ e ∗ x ≈ x

Every group G = (G , eG , ∗G , iG) is a model of F

Mod(F) is the class of all groups

F ⊂ Th(Mod(F))

47

Examples

2. Linear (positive)integer arithmetic

Let Σ = ({0/0, s/1,+/2}, {≤ /2})

Let Z+ = (Z, 0, s, +,≤) the standard interpretation of integers.

{Z+} ⊂ Mod(Th(Z+))

3. Uninterpreted function symbols

Let Σ = (Ω,Π) be arbitrary

Let M = Σ-alg be the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family

of all first-order formulae which are true in all Σ-algebras.

48

Examples

4. Lists

Let Σ = ({car/1, cdr/1, cons/2}, ∅)

Let F be the following set of list axioms:

car(cons(x , y)) ≈ x

cdr(cons(x , y)) ≈ y

cons(car(x), cdr(x)) ≈ x

Mod(F) class of all models of F

ThLists = Th(Mod(F)) theory of lists (axiomatized by F)

49

“Most general” models

We assume that Π = ∅.

Term algebras

A term algebra (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

f

fA(△, . . . ,△) =

△ . . . △

50

Term algebras

In other words, values are fixed to be ground terms and functions

are fixed to be the term constructors.

51

Free algebras

Let K be the class of Σ-algebras which satisfy a set of axioms which are either

equalities

A

x : t(x) ≈ s(x)

or implications:

A

x : t1(x) ≈ s1(x) ∧ · · · ∧ tn(x) ≈ sn(x) → t(x) ≈ s(x)

We can construct the “most general” model in K:

• Construct the term algebra TΣ(X) (resp. TΣ)

• Identify all terms t, t′ such that K |= t ≈ t′

(all terms which become equal as a consequence of the axioms).

∼ congruence relation

Construct the algebra of equivalence classes: TΣ(X)/∼ (resp. TΣ/∼)

• TΣ(X)/∼ is the free algebra in K freely generated by X .

TΣ/∼ is the free algebra in K.

52

Universal property of the free algebras

For every A ∈ K and every β : X → A there exists a unique extension β′

of β which is an algebra homomorphism:

β′ : TΣ(X)/ ∼→ A

53

Examples

TΣ(X) is the free algebra freely generated by X for the class of all algebras

of type Σ.

Let X be a set of symbols and X∗ be the class of all finite strings of

elements in X , including the empty string.

We construct the monoid (X∗, ·, 1) by defining · to be concatenation, and

1 is the empty string.

(X∗, ·, 1) is the free monoid freely generated by X .

54

Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.

55

Formal specification

• Specification languages for describing programs/processes/systems

• Specification languages for properties of programs/processes/systems

56

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

Axiom-based specification

Declarative specifications

• Specification languages for properties of programs/processes/systems

57

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

Declarative specifications

• Specification languages for properties of programs/processes/systems

58

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

• Specification languages for properties of programs/processes/systems

59

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

• Specification languages for properties of programs/processes/systems

60

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE

• Specification languages for properties of programs/processes/systems

Temporal logic

61

Algebraic specification

• appropriate for specifying the interface of a module or class

• enables verification of implementation w.r.t. specification

• for every ADT operation: argument and result types (sorts)

• semantic equations over operations (axioms) e.g. for every combination

of “defined function” (e.g. top, pop) and constructor with the

corresponding sort (e.g. push, empty)

• problem: consistency?, completeness?

62

Example: Algebraic specification

63

Example: Algebraic specification

reduce pop(push(X,S)) == S .

reduce top(pop(push(X,push(Y,S)))) == Y .

reduce S == push(X,S2) implies push(top(S),pop(S)) == S .

reduce S == push(X,S2) implies length(pop(S)) + 1 == length(S) .

• the equations can be used as term rewriting rules

• this allows proving properties of the specification

64

Syntax of Algebraic Specifications

Signatures: as in FOL (S , Ω, Π)

Example:

STACK = ({Stack,Nat},

{empty : ǫ → Stack,

push : Nat × Stack → Stack,

pop : Stack → Stack,

top : Stack → Nat,

length : Stack → Nat,

0 : ǫ → Nat, 1 : ǫ → Nat

}

65

Semantics of Algebraic Specifications

Σ-algebras

Observations

• different Σ-algebras are not necessarily “equivalent”

• we seek the most “abstract” Σ-algebra,

since it anticipates as little implementation decisions as possible

66

Semantics of Algebraic Specifications

Σ-algebras

Observations

• different Σ-algebras are not necessarily “equivalent”

• we seek the most “abstract” Σ-algebra,

since it anticipates as little implementation decisions as possible

No equations: Term algebras

Equations/Horn clauses: free algebras

TΣ/ ∼, where

t ∼ t′ iff

Ax |= t ≈ t′ iff

For every A ∈ Mod(Ax), A |= t ≈ t′

67

Algebraic Specification

“A gentle introduction to CASL”

M. Bidoit and P. Mosses

http://www.lsv.ens-cachan.fr/∼bidoit/GENTLE.pdf

(cf. also the slides of the lecture available online)

A subset of the slides was discussed today.

68

