Formal Specification and Verification

Temporal logic (2)

17.06.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Formal specification

e Specification for program /system

e Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required
properties.

Temporal logic

Motivation

The purpose of temporal logic (TL) is:

e reasoning about time (in philosophy), and

e reasoning about the behaviour of systems evolving over time
(in computer science).

Models of time

Which flow of time should we use?

This depends on the application!

Models of time

The main application of TL in computer science is the verification of
finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at
an instant of time.

e Finite-state systems.
Finite-state systems can only take finitely many states.
(Often, infinite-state systems can be abstracted into finite-state ones
by grouping the states into a finite number of partitions.)

Models of time

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

e Reactive Systems.
A reactive system interacts with the environment frequently and usually
does not terminate. lts correctness is defined via these interactions.
This is in contrast to a classical algorithm that takes an input initially

and then eventually terminates producing a result.

Models of time

The main application of TL in computer science is the verification of
finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

e Concurrent Systems.
Systems consisting of multiple, interacting processes. One process does
not know about the internal state of the others. May be viewed as a
collection of reactive systems.

Models of time

The main application of TL in computer science is the verification of
finite-state reactive and concurrent systems.

Task: Verificaton.

Given the (formal) description of a system and of its intended behaviour,
check whether the system indeed complies with this behaviour.

Transition systems

We use an abstract model of reactive and concurrent systems.

Definition (Transition system, simplified version)

Let Il be a finite set of propositional variables.

A transition system is a tuple (S, —, S;, L) with
e S a non-empty set of states;

e —C S X S is a transition relation that is total, i.e.
for each state s € S, there is a state s’ € S such that s — s’/;

e S; C S is a set of initial states;

o L:S — {0,1}#" is a valuation function
which we will also regard as a function L : AP x S — {0, 1}

10

Example

Consider the following simple mutual-exclusion protocol:

task body ProcA is
begin
loop
(0) Non_Critical_Section_A;
(1) loop [exit when Turn = 0] end loop;
(2) Critical_Section_A;
(3) Turn := 1;
end loop;
end ProcA;

task body ProcB is
begin
loop
(0) Non_Critical_Section_B;
(1) loop [exit when Turn = 1] end loop;
(2) Critical_Section_B;
(3) Turn := 0;
end loop;
end Procl;

Assume that the processes run asynchronously, i.e., either Process A or B
makes a step, but not both. The order of executions is undetermined.

11

Example

N={(T=i)|ie{0,1}}u{(X=1i)|Xe{AB}ic{01,23}}

(T = i) means that Turn is set to /, and

(X = i) means the process X is currently in Line i.

12

Example

We define the following transition system (S, —, S;, L):

e S={0,1} x{0,1,2,3} x {0,1,2,3}
(t,i,j) € S: state in which Turn = t, Ais at line i, B is at line j
e S5, =1{(0,0,0),(1,0,0)}

o —— RpU Rpg, where
Ra={((t,i,j),(t',i".j)| (i€{0,2,3}At=t')—i"=i+1(modb),
t=0,i=1—i" =2
t=1,i=1—i"=1
i=3—>t =1}
and Rp is defined similarly
o L(T=1t'),(tij)=1ifft' =t
LI(A=i"),(t,i,j)=1iff i’ =i
L((B=j"),(t.i,j)=1iffj' =

13

Computations

Let TS = (S, —, S;, L) be a transition system.

A computation (or execution) of TS is an infinite sequence sps; ... of
states such that s € S; and s; — s;.1 for all i > 0.

Example: computation (execution) of the transition system from the

previous example:
(0,0,0),(0,1,0),(0,1,1),(0,2,1),(0,3,1),(1,0,1),(1,0,2),...

This corresponds to an (asynchronous) execution of the concurrent system

with Processes A and B.

Note that our formalization allows computations that are unfair, e.g., in
which Process B is never executed. Such issues are not adressed on the

level of transition systems.

14

Example

Interesting properties that can be verified in this Example include the
following:

e Mutual exclusion: can A and B be at Line (2) at the same time?

e Guaranteed accessibility: if process X € {A, B} is at Line (2), is it
guaranteed that it will eventually reach Line (3)7

(holds, but only in computations that execute both Process A and
Process B infinitely often)

Later, we will express such properties as temporal logic formulas.

15

Computation trees

Transition systems can be non-deterministic, i.e., for an s € S, the set
{s’ | s — s’} can have arbitrary cardinality > 0.

Thus, in general there is more than a single computation.

Instead of considering single computations in isolation, we can arrange all

of them in a computation tree.

Informally, for s € S;, the (infinite) computation tree T(TS,s) of TS at

s € S is inductively constructed as follows:
e use s as the root node;

e for each leaf s’ of the tree, add successors {t € S | s" — t}.

16

Computation trees

The computation tree of the transition system from the previous example
starting at state (0, 0, 0) is:

(0,0,0)

©, 1, 0) (0,0, 1)
./ \ ¢
0, 2, 0) ©, 1, 1)

/NN

(0,3,00 (0,2,1) (0,2,1) (0,1,1)

A

17

Linear Time Logic

Syntax

[1 set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

e |, T and each propositional variable P € Il are formulae;
e if F, G are formulae, then so are FA G, FV G, —F;

e if F, G are formulae, then so are (OF and FUG

18

Linear Time Logic

Syntax

[1 set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

e |, T and each propositional variable P € Il are formulae;
e if F, G are formulae, then so are FA G, FV G, —F;

e if F, G are formulae, then so are (OF and FUG

Remark: Instead of ()F in some books also XF is used.

19

Linear Time Logic

Semantics

e Transition systems (S, —, L)
(with the property that for every s € S there exists s’ € S with s — s’
i.e. no state of the system can “deadlock”?)

Transition systems are also simply called models in what follows.

3This is a technical convenience, and in fact it does not represent any
real restriction on the systems we can model. If a system did deadlock, we
could always add an extra state sy representing deadlock, together with new
transitions s — sy for each s which was a deadlock in the old system, as
well as sy — s4.

20

Linear Time Logic

Semantics

e Transition systems (S, —, L)
(with the property that for every s € S there exists s’ € S with s — s’
i.e. no state of the system can “deadlock”?)

Transition systems are also simply called models in what follows.

e Computation (execution, path) in a model (S, —, L)
infinite sequence of states m = sp, s1, S, ... in S such that for each
1 >0, s — Sj11-
We write the path as sp — st —+ s — ...

3This is a technical convenience, and in fact it does not represent any
real restriction on the systems we can model. If a system did deadlock, we
could always add an extra state sy representing deadlock, together with new
transitions s — sy4 for each s which was a deadlock in the old system, as
well as sy — s4.

21

Linear Time Logic

Consider the path m = sp — s1 —
It represents a possible future of our system.

We write ' for the suffix starting at s;, e.g.,

T~ —8S3 —>S4 —7

22

Linear Time Logic

Semantics
Let TS = (S, —, L) be a model and w = sy — ... be a path in TS.

Whether 7 satisfies an LTL formula is defined by the satisfaction relation
= as follows:

o T—= 1T

o mhL

o T=piff pe L(sp), if pelTl

e TEFiffn l£F

e T=EFAGIiffr=FandmEG

e T=EFVGiffr=EFormEG

o tEQFiffrl = F

e TEFUGIffAM>0st.mmE=Gand Vke {0,....,m—1}: 7K EF

23

Linear Time Logic

Alternative way of defining the semantics:

An LTL structure M is an infinite sequence S¢51... with S; C I1 for all

i > 0. We define satisfaction of LTL formulas in M at time points n € N as

follows:

M, n
M, n
M, n
M, n
M, n
M, n

= p iff p € Sp, if peTl

= FAGiff Min=Fand M,n=G
= FVGift Min=ForM,nEG
— —F ift M,n = F

= OF ff M,n+1E F

= FUG iff dm > ns.t. M, m = G and
Vke{n...m—1}:Mk=F

Note that the time flow (N, <) is implicit.

24

Transition systems and LTL models

The connection between transition systems and LTL structures is as follows:

Every computation (evolution, path) of a transition system sy — s ...
gives rise to an LTL structure.

To see this, let TS = (S, —, L) be a transition system.

A computation sp, s1,... of TS induces an LTL structure
L(So)L(Sl) S

Such an LTL structure is called a trace of TS.

25

Abbreviations

e [he future diamond
O = TUP
TECPIffAM>0: 7" = ¢

e [he future box
TEOpiffVm>0: 7" = ¢

26

Abbreviations

e [he future diamond
O = TUP
TECPIffAM>0: 7" = ¢

e [he future box
m = O¢ iff Ym>0: 7™ = ¢

Sometimes denoted also F¢

M,n=<CopiffdAm>n: M, m = ¢

Sometimes also denoted G¢

M,n = O¢ ift Vm>n: M, m = ¢

27

Abbreviations

e The infinitely often operator
OX¢ =00

mE O iff {m > 0| 7™ = ¢} is infinite
M,nE=o%¢ iff {m > n | M, m = ¢} is infinite

e The almost everywhere operator
O0°¢ = <00

mEO%¢iff {m> 0| 7™ [~ ¢} is finite.
M,n=0O%¢ iff {m > n| M, m |~ ¢} is finite.

28

Abbreviations

e The release operator

PR 1= ~(=pU—1))

T = ¢RyY iff (Am > 0: 7™ |= ¢ and Vk < m: 7K |=) or
(Vk >0: 75 =)

M,nE= Ry iff (Am>n: MimE ¢ and Vk < m: M, mE= 1) or
(Vk>m: M, k =)

Read as

“2p always holds unless released by ¢" i.e.,

“2 holds permanently up to and including the first point where ¢
holds (such an ¢-point need not exist at all)".

29

