
Formal Specification and Verification

Temporal logic (2)

17.06.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.

2

Temporal logic

3

Motivation

The purpose of temporal logic (TL) is:

• reasoning about time (in philosophy), and

• reasoning about the behaviour of systems evolving over time

(in computer science).

4

Models of time

Which flow of time should we use?

This depends on the application!

5

Models of time

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Finite-state systems.

Finite-state systems can only take finitely many states.

(Often, infinite-state systems can be abstracted into finite-state ones

by grouping the states into a finite number of partitions.)

6

Models of time

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Reactive Systems.

A reactive system interacts with the environment frequently and usually

does not terminate. Its correctness is defined via these interactions.

This is in contrast to a classical algorithm that takes an input initially

and then eventually terminates producing a result.

7

Models of time

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Concurrent Systems.

Systems consisting of multiple, interacting processes. One process does

not know about the internal state of the others. May be viewed as a

collection of reactive systems.

8

Models of time

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

Task: Verificaton.

Given the (formal) description of a system and of its intended behaviour,

check whether the system indeed complies with this behaviour.

9

Transition systems

We use an abstract model of reactive and concurrent systems.

Definition (Transition system, simplified version)

Let Π be a finite set of propositional variables.

A transition system is a tuple (S ,→,Si , L) with

• S a non-empty set of states;

• →⊆ S × S is a transition relation that is total, i.e.

for each state s ∈ S , there is a state s′ ∈ S such that s → s′;

• Si ⊆ S is a set of initial states;

• L : S → {0, 1}AP is a valuation function

which we will also regard as a function L : AP × S → {0, 1}

10

Example

Consider the following simple mutual-exclusion protocol:

task body ProcA is

begin

loop

(0) Non_Critical_Section_A;

(1) loop [exit when Turn = 0] end loop;

(2) Critical_Section_A;

(3) Turn := 1;

end loop;

end ProcA;

task body ProcB is

begin

loop

(0) Non_Critical_Section_B;

(1) loop [exit when Turn = 1] end loop;

(2) Critical_Section_B;

(3) Turn := 0;

end loop;

end ProcA;

Assume that the processes run asynchronously, i.e., either Process A or B

makes a step, but not both. The order of executions is undetermined.

11

Example

Π = {(T = i) | i ∈ {0, 1}} ∪ {(X = i) | X ∈ {A,B}, i ∈ {0, 1, 2, 3}}

(T = i) means that Turn is set to i , and

(X = i) means the process X is currently in Line i .

12

Example

We define the following transition system (S ,→, Si , L):

• S = {0, 1} × {0, 1, 2, 3} × {0, 1, 2, 3}

(t, i , j) ∈ S : state in which Turn = t, A is at line i , B is at line j

• Si = {(0, 0, 0), (1, 0, 0)}

• →= RA ∪ RB , where

RA = {((t, i , j), (t′, i ′, j)) | (i ∈ {0, 2, 3} ∧ t = t′) → i ′ = i + 1 (mod4),
t = 0, i = 1 → i ′ = 2
t = 1, i = 1 → i ′ = 1
i = 3 → t′ = 1}

and RB is defined similarly

• L((T = t′), (t, i , j)) = 1 iff t′ = t

L((A = i ′), (t, i , j)) = 1 iff i ′ = i

L((B = j′), (t, i , j)) = 1 iff j′ = j

13

Computations

Let TS = (S ,→, Si , L) be a transition system.

A computation (or execution) of TS is an infinite sequence s0s1 . . . of

states such that s0 ∈ Si and si → si+1 for all i ≥ 0.

Example: computation (execution) of the transition system from the

previous example:

(0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 2, 1), (0, 3, 1), (1, 0, 1), (1, 0, 2), . . .

This corresponds to an (asynchronous) execution of the concurrent system

with Processes A and B.

Note that our formalization allows computations that are unfair, e.g., in

which Process B is never executed. Such issues are not adressed on the

level of transition systems.

14

Example

Interesting properties that can be verified in this Example include the

following:

• Mutual exclusion: can A and B be at Line (2) at the same time?

• Guaranteed accessibility: if process X ∈ {A,B} is at Line (2), is it

guaranteed that it will eventually reach Line (3)?

(holds, but only in computations that execute both Process A and

Process B infinitely often)

Later, we will express such properties as temporal logic formulas.

15

Computation trees

Transition systems can be non-deterministic, i.e., for an s ∈ S , the set

{s′ | s → s′} can have arbitrary cardinality > 0.

Thus, in general there is more than a single computation.

Instead of considering single computations in isolation, we can arrange all

of them in a computation tree.

Informally, for s ∈ Si , the (infinite) computation tree T (TS , s) of TS at

s ∈ S is inductively constructed as follows:

• use s as the root node;

• for each leaf s′ of the tree, add successors {t ∈ S | s′ → t}.

16

Computation trees

The computation tree of the transition system from the previous example

starting at state (0, 0, 0) is:

(0, 0, 0)

 (0, 2, 0) (0, 1, 1)

 (0, 1, 0) (0, 0, 1)

(0, 3, 0) (0, 2, 1) (0, 2, 1) (0, 1, 1)

17

Linear Time Logic

Syntax

Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

• ⊥,⊤ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are ©F and FUG

18

Linear Time Logic

Syntax

Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

• ⊥,⊤ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are ©F and FUG

Remark: Instead of ©F in some books also XF is used.

19

Linear Time Logic

Semantics

• Transition systems (S ,→, L)

(with the property that for every s ∈ S there exists s′ ∈ S with s → s′

i.e. no state of the system can “deadlock”a)

Transition systems are also simply called models in what follows.

aThis is a technical convenience, and in fact it does not represent any

real restriction on the systems we can model. If a system did deadlock, we

could always add an extra state sd representing deadlock, together with new

transitions s → sd for each s which was a deadlock in the old system, as

well as sd → sd .

20

Linear Time Logic

Semantics

• Transition systems (S ,→, L)

(with the property that for every s ∈ S there exists s′ ∈ S with s → s′

i.e. no state of the system can “deadlock”a)

Transition systems are also simply called models in what follows.

• Computation (execution, path) in a model (S ,→, L)

infinite sequence of states π = s0, s1, s2, ... in S such that for each

i ≥ 0, si → si+1.

We write the path as s0 → s1 → s2 →
aThis is a technical convenience, and in fact it does not represent any

real restriction on the systems we can model. If a system did deadlock, we

could always add an extra state sd representing deadlock, together with new

transitions s → sd for each s which was a deadlock in the old system, as

well as sd → sd .

21

Linear Time Logic

Consider the path π = s0 → s1 →

It represents a possible future of our system.

We write πi for the suffix starting at si , e.g.,

π3 = s3 → s4 →

22

Linear Time Logic

Semantics

Let TS = (S ,→, L) be a model and π = s0 → ... be a path in TS .

Whether π satisfies an LTL formula is defined by the satisfaction relation

|= as follows:

• π |= ⊤

• π 6|=⊥

• π |= p iff p ∈ L(s0), if p ∈ Π

• π |= ¬F iff π 6|= F

• π |= F ∧ G iff π |= F and π |= G

• π |= F ∨ G iff π |= F or π |= G

• π |= ©F iff π1 |= F

• π |= FUG iff

E

m ≥ 0 s.t. πm |= G and

A

k ∈ {0, . . . ,m− 1} : πk |= F

23

Linear Time Logic

Alternative way of defining the semantics:

An LTL structure M is an infinite sequence S0S1 . . . with Si ⊆ Π for all

i ≥ 0. We define satisfaction of LTL formulas in M at time points n ∈ N as

follows:

• M, n |= p iff p ∈ Sn, if p ∈ Π

• M, n |= F ∧ G iff M, n |= F and M, n |= G

• M, n |= F ∨ G iff M, n |= F or M, n |= G

• M, n |= ¬F iff M, n 6|= F

• M, n |= ©F iff M, n + 1 |= F

• M, n |= FUG iff

E

m ≥ n s.t. M,m |= G and

A

k ∈ {n, . . . ,m − 1} : M, k |= F

Note that the time flow (N,<) is implicit.

24

Transition systems and LTL models

The connection between transition systems and LTL structures is as follows:

Every computation (evolution, path) of a transition system s0 → s1 . . .

gives rise to an LTL structure.

To see this, let TS = (S ,→,L) be a transition system.

A computation s0, s1, ... of TS induces an LTL structure

L(s0)L(s1) . . .

Such an LTL structure is called a trace of TS .

25

Abbreviations

• The future diamond

✸φ := ⊤Uφ

π |= ✸φ iff

E

m ≥ 0 : πm |= φ

• The future box

✷φ := ¬✸¬φ

π |= ✷φ iff

A

m ≥ 0 : πm |= φ

26

Abbreviations

• The future diamond

✸φ := ⊤Uφ Sometimes denoted also Fφ

π |= ✸φ iff

E

m ≥ 0 : πm |= φ M, n |= ✸φ iff

E

m ≥ n : M,m |= φ

• The future box

✷φ := ¬✸¬φ Sometimes also denoted Gφ

π |= ✷φ iff

A

m≥0 : πm |= φ M, n |= ✷φ iff

A

m≥n : M,m |= φ

27

Abbreviations

• The infinitely often operator

✸
∞φ := ✷✸φ

π |= ✸
∞φ iff {m ≥ 0 | πm |= φ} is infinite

M, n |= ✸
∞φ iff {m ≥ n | M,m |= φ} is infinite

• The almost everywhere operator

✷
∞φ := ✸✷φ

π |= ✷
∞φ iff {m ≥ 0 | πm 6|= φ} is finite.

M, n |= ✷
∞φ iff {m ≥ n | M,m 6|= φ} is finite.

28

Abbreviations

• The release operator

φRψ := ¬(¬φU¬ψ)

π |= φRψ iff (

E

m ≥ 0 : πm |= φ and

A

k < m: πk |= ψ) or

(

A

k ≥ 0 : πk |= ψ)

M, n |= φRψ iff (

E

m ≥ n : M,m |= φ and

A

k < m : M,m |= ψ) or

(

A

k ≥ m : M, k |= ψ)

Read as

“ψ always holds unless released by φ” i.e.,

“ψ holds permanently up to and including the first point where φ

holds (such an φ-point need not exist at all)”.

29

