Formal Specification and Verification

Temporal logic (Part 4)

3.07.2014

Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de

Branching Time Logic: CTL

CTL: Syntax

The class of computational tree logic (CTL) formulas is the smallest set such that

- \top , \perp and each propositional variable $P \in \Pi$ are formulae;
- if F, G are formulae, then so are $F \wedge G, F \vee G, \neg F$;
- if F, G are formulae, then so are $A \bigcirc F$ and $E \bigcirc F$, A(FUG) and E(FUG).

The symbols A and E are called path quantifiers.

CTL: Semantics

Let $T = (S, \rightarrow, L)$ be a transition system. We define satisfaction of CTL formulas in T at states $s \in S$ as follows:

 $(T, s) \models p$ iff $p \in L(s)$ $(T, s) \models \neg F$ iff $(T, s) \models F$ is not the case $(T, s) \models F \land G$ iff $(T, s) \models F$ and $(T, s) \models G$ $(T, s) \models F \lor G$ iff $(T, s) \models F$ or $(T, s) \models G$ $(T, s) \models E \bigcirc F$ iff $(T, t) \models F$ for some $t \in S$ with $s \to t$ $(T, s) \models A \bigcirc F$ iff $(T, t) \models F$ for all $t \in S$ with $s \to t$ $(T, s) \models A(FUG)$ for all computations $\pi = s_0 s_1 \dots$ of T with $s_0 = s$, iff there is an $m \geq 0$ such that $(T, s_m) \models G$ and $(T, s_k) \models F$ for all k < m $(T, s) \models E(F\mathcal{U}G)$ iff there exists a computation $\pi = s_0 s_1 \dots$ of T with $s_0 = s$, such that there is an $m \ge 0$ such that $(T, s_m) \models G$ and $(T, s_k) \models F$ for all k < m

Equivalence

We say that two CTL formulas F and G are (globally) equivalent (written $F \equiv G$) if, for all CTL structures $T = (S, \rightarrow, L)$ and $s \in S$, we have

 $T, s \models F$ iff $T, s \models G$.

Equivalence

We say that two CTL formulas F and G are (globally) equivalent (written $F \equiv G$) if, for all CTL structures $T = (S, \rightarrow, L)$ and $s \in S$, we have

 $T, s \models F$ iff $T, s \models G$.

Examples:

 $\neg A \diamondsuit F \equiv E \Box \neg F$

 $\neg E \diamondsuit F \equiv A \Box \neg F$

 $\neg A \bigcirc F \equiv E \bigcirc \neg F$

 $A \diamondsuit F \equiv A[\top \mathcal{U}F]$

 $E \diamondsuit F \equiv E[\top \mathcal{U}F]$

The CTL model checking problem is as follows:

Given a transition system $T = (S, \rightarrow, L)$ and a CTL formula F, check whether T satifies F, i.e., whether $(T, s) \models F$ for all $s \in S$.

The CTL model checking problem is as follows:

Given – a transition system $T = (S, \rightarrow, L)$ with S finite and – a CTL formula F, check whether T satifies F, i.e., whether $(T, s) \models F$ for all $s \in S$.

Method (Idea)

- (1) Arrange all subformulas F_i of F in a sequence $F_0, \ldots F_k$ in ascending order w.r.t. formula length: for $1 \le i < j \le k$, F_i is not longer than F_j ;
- (2) For all subformulas F_i of F, compute the set

$$sat(F_i) := \{s \in S | (T, s) \models F_i\}$$

in this order (from shorter to longer formulae);

(3) Check whether $S \subseteq sat(F)$.

How to compute $sat(F_i)$

- $p \in \Pi \mapsto sat(p) = \{s \mid L(p, s) = 1\}$
- $sat(\neg F_i) = S \setminus sat(F_i)$
- $sat(F_i \wedge F_j) = sat(F_i) \cap sat(F_j)$
- $sat(F_i \lor F_j) = sat(F_i) \cup sat(F_j)$
- $sat(E \bigcirc F_i) = \{s \mid \exists t \in S : (s \rightarrow t) \land t \in sat(F_i)\}$
- $sat(A \bigcirc F_i) = \{s \mid \forall t \in S : (s \rightarrow t) \land t \in sat(F_i)\}$
- sat(E(F_iUF_j)) and sat(A(F_iUF_j)) are computed with the following procedures:

```
F = E(F_{j}\mathcal{U}F_{j})
sat(F) := T := sat(F_{j})

while T = \= {} do

choose s in T

T := T \ {s}

for all t in S with t -> s do

if t in sat(F_{i}) and t not in sat(F) then

sat(F) := sat(F) U {t}

T := T U {t}
```

$F = A(F_i \mathcal{U} F_j)$

```
sat(F) := T := sat(F_j)
while T = {} do
  choose s in T
  T := T \ {s}
  for all t in S with t -> s do
    flag = 1
    for all t' in S with t -> t' do
        if t' not in sat(F) then flag := 0
    if t in sat(F_i) and t not in sat(F) and flag = 1 then
        sat(F) := sat(F) U {t}
        T := T U {t}
```

Examples

- See scans linked directly.
- See also the examples in

Christel Baier and Joost-Pieter Katoen: "Principles of Model Checking" pages 344–348.

Theorem. $(T, s) \models F$ iff $s \in sat(F)$.

Consequence. CTL model checking is decidable.

Concerning the complexity, we observe the following: if F is of length n, then at most n sets $sat(F_i)$ need to be computed. How complex is it to compute each such set?

- F is a propositional letter or of the form $F_1 \wedge F_2$ or $\neg F_1$: O(|S|) steps needed;
- F is of the form E F_j or E(F_iUF_j): O(|S| + | → |) steps needed the maximum cardinality of the initial set sat(F_j) is |S|, and, in the forall loop, each edge from → is "touched" at most once (in all iterations of the while);
- *F* is of the form $A(F_i \mathcal{U} F_j) : O(|S| + | \rightarrow |^2)$ steps needed

the maximum cardinality of the initial set $sat(F_j)$ is |S|, the outer forall loop touches each edge from \rightarrow at most once, and the inner forall loop touches each edge at most once for each step done by the outer forall loop.

There exist more efficient algorithms (complexity $|F| \cdot O(|S| + | \rightarrow |)$).

Theorem. $(T, s) \models F$ iff $s \in sat(F)$.

Idea of the proof: Structural induction, taking into account that:

- $sat(\top) = S$, $sat(\bot) = \emptyset$, $sat(p) = \{s \mid p \in L(s)\}$, $p \in \Pi$
- $sat(\neg F) = S \setminus sat(F)$; $sat(F \land G) = sat(F) \cap sat(G)$
- $sat(E \bigcirc F) = \{s \in S \mid Post(s) \cap sat(F) \neq \emptyset\}$
- E(FUG) ≡ G ∨ (F ∧ E E(FUG))
 Sat(E(FUG)) is the smallest subset T of S such that
 (1) sat(G) ⊆ T (2) s ∈ sat(F) and Post(s) ∩ T ≠ Ø implies s ∈ T
- E□F ≡ F ∧ E E□F
 sat(E□F) is the largest subset T of S such that:
 (1) T ⊆ sat(F)
 (2) s ∈ T implies Post(s) ∩ T ≠ Ø
- sat(A(FUG)) is the smallest subset T of S satisfying

 $sat(G) \cup \{s \in sat(F) \mid Post(s) \subseteq T\} \subseteq T$

Lemma. sat(E(FUG)) is the smallest set T with

- (1) $sat(G) \subseteq T$
- (2) $s \in sat(F)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$

Proof: 1. Show that T = sat(E(FUG)) satisfies (1) and (2).

This follows from the fact that

$$E(F\mathcal{U}G) = G \vee (F \wedge E \bigcirc E(F\mathcal{U}G)).$$

- (1) $sat(G) \subseteq T$
- (2) $s \in sat(F)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$

Lemma. sat(E(FUG)) is the smallest set T with

- (1) $sat(G) \subseteq T$
- (2) $s \in sat(F)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$

Proof: 2. Show that for any T satisfying (1) and (2), $sat(E(FUG)) \subseteq T$ Let $s \in sat(E(FUG))$ Case 1: $s \in sat(G)$. Then by (1), $s \in T$. Case 2: $s \notin sat(G)$. Then there exists a path $\pi = s_0 \dots s_k \dots$ with $s_0 = s$ such that $\pi \models FUG$.

Proof: 2. Show that for any T satisfying (1) and (2), $sat(E(FUG)) \subseteq T$ continued

```
Then

s_{n+1} \in sat(G) \in T,

s_n \in sat(F) and s_{n+1} \in Post(s_n) \cap T, so s_n \in T.

s_{n-1} \in sat(F) and s_n \in Post(s_{n-1}) \cap T, so s_{n-1} \in T.

\dots

s_0 = s \in sat(F) and s_1 \in Post(s_0) \cap T, so s_0 = s \in T.
```

Remarks:

EFUG is a fixpoint of the equation $\Phi \equiv G \lor (F \land E \bigcirc \Phi)$.

Since sat(EFUG) is the smallest set T with

(1) $sat(G) \subseteq T$

(2) $s \in sat(F)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$

it can be computed iteratively as follows:

 $T_0 := sat(G)$

 $T_{i+1} := T_i \cup \{s \in sat(F) \mid Post(s) \cap T_i \neq \emptyset\}$

Then: $T_0 \subseteq T_1 \subseteq \cdots \subseteq T_j \subseteq T_{j+1} \subseteq \cdots \subseteq sat(E(FUG)).$

Since *S* is finite, there exists *j* such that $T_j = T_{j+1} = \dots$ This T_i will be sat(E(FUG)).

Remarks:

 $sat(E \Box F)$ is the largest set T with

(1) $T \subseteq sat(F)$

(2) $s \in T$ implies $Post(s) \cap T \neq \emptyset$.

It can be computed iteratively as follows:

$$T_0 := sat(F)$$

 $T_{i+1} := T_i \cap \{s \in sat(F) \mid Post(s) \cap T_i \neq \emptyset\}$

Then: $T_0 \supseteq T_1 \supseteq \cdots \supseteq T_j \supseteq T_{j+1} \supseteq \cdots \supseteq sat(E(FUG)).$

Since *S* is finite, there exists *j* such that $T_j = T_{j+1} = \dots$ This T_j will be $sat(E \Box F)$.