
Formal Specification and Verification

Temporal logic (Part 4)

3.07.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Branching Time Logic: CTL

2

CTL: Syntax

The class of computational tree logic (CTL) formulas is the smallest set

such that

• ⊤,⊥ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are

A© F and E © F ,

A(FUG) and E(FUG).

The symbols A and E are called path quantifiers.

3

CTL: Semantics

Let T = (S ,→,L) be a transition system. We define satisfaction of CTL

formulas in T at states s ∈ S as follows:

(T , s) |= p iff p ∈ L(s)

(T , s) |= ¬F iff (T , s) |= F is not the case

(T , s) |= F ∧ G iff (T , s) |= F and (T , s) |= G

(T , s) |= F ∨ G iff (T , s) |= F or (T , s) |= G

(T , s) |= E © F iff (T , t) |= F for some t ∈ S with s → t

(T , s) |= A © F iff (T , t) |= F for all t ∈ S with s → t

(T , s) |= A(FUG) iff for all computations π = s0s1 . . . of T with s0 = s,

there is an m ≥ 0 such that (T , sm) |= G and

(T , sk) |= F for all k < m

(T , s) |= E(FUG) iff there exists a computation π = s0s1 . . . of T with s0 = s,

such that there is an m ≥ 0 such that (T , sm) |= G and

(T , sk) |= F for all k < m

4

Equivalence

We say that two CTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all CTL structures T = (S ,→,L) and s ∈ S , we have

T , s |= F iff T , s |= G .

5

Equivalence

We say that two CTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all CTL structures T = (S ,→,L) and s ∈ S , we have

T , s |= F iff T , s |= G .

Examples:

¬A✸F ≡ E✷¬F

¬E✸F ≡ A✷¬F

¬A© F ≡ E ©¬F

A✸F ≡ A[⊤UF]

E✸F ≡ E [⊤UF]

6

Model Checking

The CTL model checking problem is as follows:

Given a transition system T = (S ,→, L) and a CTL formula F ,

check whether T satifies F , i.e., whether (T , s) |= F for all s ∈ S .

7

Model Checking

The CTL model checking problem is as follows:

Given – a transition system T = (S ,→, L) with S finite and

– a CTL formula F ,

check whether T satifies F , i.e., whether (T , s) |= F for all s ∈ S .

Method (Idea)

(1) Arrange all subformulas Fi of F in a sequence F0, . . .Fk in ascending

order w.r.t. formula length: for 1 ≤ i < j ≤ k, Fi is not longer than Fj ;

(2) For all subformulas Fi of F , compute the set

sat(Fi) := {s ∈ S |(T , s) |= Fi}

in this order (from shorter to longer formulae);

(3) Check whether S ⊆ sat(F).

8

Model Checking

How to compute sat(Fi)

• p ∈ Π 7→ sat(p) = {s | L(p, s) = 1}

• sat(¬Fi) = S\sat(Fi)

• sat(Fi ∧ Fj) = sat(Fi) ∩ sat(Fj)

• sat(Fi ∨ Fj) = sat(Fi) ∪ sat(Fj)

• sat(E © Fi) = {s |

E

t ∈ S : (s → t) ∧ t ∈ sat(Fi)}

• sat(A© Fi) = {s |

A

t ∈ S : (s → t) ∧ t ∈ sat(Fi)}

• sat(E(FiUFj)) and sat(A(FiUFj) are computed with the following

procedures:

9

Model Checking

F = E(FiUFj)

sat(F) := T := sat(F_j)

while T =\= {} do

choose s in T

T := T \ {s}

for all t in S with t -> s do

if t in sat(F_i) and t not in sat(F) then

sat(F) := sat(F) U {t}

T := T U {t}

F = A(FiUFj)

sat(F) := T := sat(F_j)

while T =\= {} do

choose s in T

T := T \ {s}

for all t in S with t -> s do

flag = 1

for all t’ in S with t -> t’ do

if t’ not in sat(F) then flag := 0

if t in sat(F_i) and t not in sat(F) and flag = 1 then

sat(F) := sat(F) U {t}

T := T U {t}

10

Examples

• See scans linked directly.

• See also the examples in

Christel Baier and Joost-Pieter Katoen: “Principles of Model Checking”

pages 344–348.

11

Model Checking

Theorem. (T , s) |= F iff s ∈ sat(F).

Consequence. CTL model checking is decidable.

Concerning the complexity, we observe the following: if F is of length n, then at most

n sets sat(Fi) need to be computed. How complex is it to compute each such set?

• F is a propositional letter or of the form F1 ∧ F2 or ¬F1: O(|S|) steps needed;

• F is of the form E © Fj or E(FiUFj): O(|S| + | → |) steps needed

the maximum cardinality of the initial set sat(Fj) is |S|, and, in the forall loop, each edge from →

is “touched” at most once (in all iterations of the while);

• F is of the form A(FiUFj) : O(|S| + | → |2) steps needed

the maximum cardinality of the initial set sat(Fj) is |S|, the outer forall loop touches each edge

from → at most once, and the inner forall loop touches each edge at most once for each step done

by the outer forall loop.

There exist more efficient algorithms (complexity |F | · O(|S| + | → |)).

12

Model Checking

Theorem. (T , s) |= F iff s ∈ sat(F).

Idea of the proof: Structural induction, taking into account that:

• sat(⊤) = S, sat(⊥) = ∅, sat(p) = {s | p ∈ L(s)}, p ∈ Π

• sat(¬F) = S\sat(F); sat(F ∧ G) = sat(F) ∩ sat(G)

• sat(E © F) = {s ∈ S | Post(s) ∩ sat(F) 6= ∅}

• E(FUG) ≡ G ∨ (F ∧ E © E(FUG))

Sat(E(FUG)) is the smallest subset T of S such that

(1) sat(G) ⊆ T (2) s ∈ sat(F) and Post(s) ∩ T 6= ∅ implies s ∈ T

• E✷F ≡ F ∧ E © E✷F

sat(E✷F) is the largest subset T of S such that:

(1) T ⊆ sat(F) (2) s ∈ T implies Post(s) ∩ T 6= ∅

• sat(A(FUG)) is the smallest subset T of S satisfying

sat(G) ∪ {s ∈ sat(F) | Post(s) ⊆ T} ⊆ T

13

Model Checking

Lemma. sat(E(FUG)) is the smallest set T with

(1) sat(G) ⊆ T

(2) s ∈ sat(F) and Post(s) ∩ T 6= ∅ implies s ∈ T

Proof: 1. Show that T = sat(E(FUG)) satisfies (1) and (2).

This follows from the fact that

E(FUG) = G ∨ (F ∧ E © E(FUG)).

(1) sat(G) ⊆ T

(2) s ∈ sat(F) and Post(s) ∩ T 6= ∅ implies s ∈ T

14

Model Checking

Lemma. sat(E(FUG)) is the smallest set T with

(1) sat(G) ⊆ T

(2) s ∈ sat(F) and Post(s) ∩ T 6= ∅ implies s ∈ T

Proof: 2. Show that for any T satisfying (1) and (2), sat(E(FUG)) ⊆ T

Let s ∈ sat(E(FUG))

Case 1: s ∈ sat(G). Then by (1), s ∈ T .

Case 2: s 6∈ sat(G).

Then there exists a path π = s0 . . . sk . . . with s0 = s such that π |= FUG .

Let n ≥ 0 such that

si |= F for 0 ≤ i ≤ n

sn+1 |= G .

15

Model checking

Proof: 2. Show that for any T satisfying (1) and (2), sat(E(FUG)) ⊆ T

....continued

Then

sn+1 ∈ sat(G) ∈ T ,

sn ∈ sat(F) and sn+1 ∈ Post(sn) ∩ T , so sn ∈ T .

sn−1 ∈ sat(F) and sn ∈ Post(sn−1) ∩ T , so sn−1 ∈ T .

. . .

s0 = s ∈ sat(F) and s1 ∈ Post(s0) ∩ T , so s0 = s ∈ T .

16

Model checking

Remarks:

EFUG is a fixpoint of the equation Φ ≡ G ∨ (F ∧ E © Φ).

Since sat(EFUG) is the smallest set T with

(1) sat(G) ⊆ T

(2) s ∈ sat(F) and Post(s) ∩ T 6= ∅ implies s ∈ T

it can be computed iteratively as follows:

T0 := sat(G)

Ti+1 := Ti ∪ {s ∈ sat(F) | Post(s) ∩ Ti 6= ∅}

Then: T0 ⊆ T1 ⊆ · · · ⊆ Tj ⊆ Tj+1 ⊆ · · · ⊆ sat(E(FUG)).

Since S is finite, there exists j such that Tj = Tj+1 =

This Tj will be sat(E(FUG)).

17

Model checking

Remarks:

sat(E✷F) is the largest set T with

(1) T ⊆ sat(F)

(2) s ∈ T implies Post(s) ∩ T 6= ∅.

It can be computed iteratively as follows:

T0 := sat(F)

Ti+1 := Ti ∩ {s ∈ sat(F) | Post(s) ∩ Ti 6= ∅}

Then: T0 ⊇ T1 ⊇ · · · ⊇ Tj ⊇ Tj+1 ⊇ · · · ⊇ sat(E(FUG)).

Since S is finite, there exists j such that Tj = Tj+1 =

This Tj will be sat(E✷F).

18

