Formal Specification and Verification

Formal specification (2)
27.05.2014

Viorica Sofronie-Stokkermans
e-mail: sofronie@uni-koblenz.de

Until now

- Logic
- Formal specification (generalities)

Algebraic specification

Formal specification

- Specification languages for describing programs/processes/systems

Model based specification
transition systems, abstract state machines, specifications based on set theory
Axiom-based specification
algebraic specification
Declarative specifications
logic based languages (Prolog)
functional languages, λ-calculus (Scheme, Haskell, OCaml, ...)
rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

- Specification languages for properties of programs/processes/systems

Temporal logic

Formal specification

- Specification languages for describing programs/processes/systems

Model based specification
transition systems, abstract state machines, specifications based on set theory
Axiom-based specification
algebraic specification
Declarative specifications
logic based languages (Prolog)
functional languages, λ-calculus (Scheme, Haskell, OCaml)
rewriting systems (very close to algebraic specification): ELAN, SPIKE

- Specification languages for properties of programs/processes/systems

Temporal logic

Algebraic Specification

"A gentle introduction to CASL"
M. Bidoit and P. Mosses
http://www.lsv.ens-cachan.fr/~bidoit/GENTLE.pdf

Formal specification

- Specification languages for describing programs/processes/systems

Model based specification
transition systems, abstract state machines, specifications based on set theory
Axiom-based specification
algebraic specification
Declarative specifications
logic based languages (Prolog)
functional languages, λ-calculus (Scheme, Haskell, OCaml)
rewriting systems (very close to algebraic specification): ELAN, SPIKE

- Specification languages for properties of programs/processes/systems

Temporal logic

Transition systems

Transition systems

- Executions
- Modeling data-dependent systems

Transition systems

- Model to describe the behaviour of systems
- Digraphs where nodes represent states, and edges model transitions
- State: Examples
- the current colour of a traffic light
- the current values of all program variables + the program counter
- the current value of the registers together with the values of the input bits
- Transition ("state change"): Examples
- a switch from one colour to another
- the execution of a program statement
- the change of the registers and output bits for a new input

Transition systems

Definition.

A transition system $T S$ is a tuple $(S, A c t, \rightarrow, I, A P, L)$ where:

- S is a set of states
- Act is a set of actions
- $\rightarrow \subseteq S \times A c t \times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- $A P$ is a set of atomic propositions
- $L: S \rightarrow 2^{A P}$ is a labeling function
S and Act are either finite or countably infinite
Notation: $s \xrightarrow{\alpha} s^{\prime}$ instead of $\left(s, \alpha, s^{\prime}\right) \in \rightarrow$.

A beverage vending machine

states? actions?, transitions?, initial states?

Direct successors and predecessors

$\operatorname{Post}(s, \alpha)=\left\{s^{\prime} \in S \mid s \xrightarrow{\alpha} s^{\prime}\right\}$,
$\operatorname{Post}(s)=\bigcup_{\alpha \in A c t} \operatorname{Post}(s, \alpha)$
$\operatorname{Pre}(s, \alpha)=\left\{s^{\prime} \in S \mid s^{\prime} \xrightarrow{\alpha} s\right\}$,

$$
\operatorname{Pre}(s)=\bigcup_{\alpha \in A c t} \operatorname{Pre}(s, \alpha)
$$

$\operatorname{Post}(C, \alpha)=\bigcup_{s \in C} \operatorname{Post}(s, \alpha)$,
$\operatorname{Post}(C)=\bigcup_{\alpha \in \operatorname{Act}} \operatorname{Post}(C, \alpha) \quad$ for $C \subseteq S$
$\operatorname{Pre}(C, \alpha)=\bigcup_{s \in C} \operatorname{Pre}(s, \alpha)$,
$\operatorname{Pre}(C)=\bigcup_{\alpha \in \operatorname{Act}} \operatorname{Pre}(C, \alpha) \quad$ for $C \subseteq S$

State s is called terminal if and only if $\operatorname{Post}(s)=\varnothing$

Action- and AP-determinism

Definition. Transition system $T S=(S, A c t, \rightarrow, I, A P, L)$ is actiondeterministic iff:

$$
|I| \leq 1 \text { and }|\operatorname{Post}(s, \alpha)| \leq 1 \text { for all } s \in S, \alpha \in \operatorname{Act}
$$

(at most one initial state and for every action, a state has at most one successor)

Definition. Transition system $T S=(S, A c t, \rightarrow, I, A P, L)$ is $A P$-deterministic iff:
$\quad|I| \leq 1$ and $\left|\operatorname{Post}(s) \cap\left\{s^{\prime} \in S \mid L\left(s^{\prime}\right)=A\right\}\right| \leq 1$ for all
(at most one initial state; for state and every $A: A P \rightarrow\{0,1\}$ there exists at most a successor of s in which "satisfies A ")

Non-determinism

Nondeterminism is a feature!

- to model concurrency by interleaving
- no assumption about the relative speed of processes
- to model implementation freedom
- only describes what a system should do, not how
- to model under-specified systems, or abstractions of real systems
- use incomplete information

Non-determinism

Nondeterminism is a feature!

- to model concurrency by interleaving
- no assumption about the relative speed of processes
- to model implementation freedom
- only describes what a system should do, not how
- to model under-specified systems, or abstractions of real systems
- use incomplete information

In automata theory, nondeterminism may be exponentially more succinct but that's not the issue here!

Transition systems \neq finite automata

As opposed to finite automata, in a transition system:

- there are no accept states
- set of states and actions may be countably infinite
- may have infinite branching
- actions may be subject to synchronization
- nondeterminism has a different role

Transition systems are appropriate for modelling reactive system behaviour

Executions

- A finite execution fragment ρ of $T S$ is an alternating sequence of states and actions ending with a state:
$\rho=s_{0} \alpha_{1} s_{1} \alpha_{2} \ldots \alpha_{n} s_{n}$ such that $s_{i} \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \leq i<n$.
- An infinite execution fragment ρ of $T S$ is an infinite, alternating sequence of states and actions:

$$
\rho=s_{0} \alpha_{1} s_{1} \alpha_{2} s_{2} \alpha_{3} \ldots \text { such that } s_{i} \xrightarrow{\alpha_{i+1}} s_{i+1} \text { for all } 0 \leq i .
$$

- An execution of $T S$ is an initial, maximal execution fragment
- a maximal execution fragment is either finite ending in a terminal state, or infinite
- an execution fragment is initial if $s_{0} \in I$

Examples of Executions

Examples of Executions

- Execution fragments ρ_{1} and ρ are initial, but ρ_{2} is not.
- ρ is not maximal as it does not end in a terminal state.
- Assuming that ρ_{1} and ρ_{2} are infinite, they are maximal

Reachable states

Definition. State $s \in S$ is called reachable in $T S$ if there exists an initial, finite execution fragment

$$
s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\alpha_{2}} \ldots \xrightarrow{\alpha_{力}} s_{n}=s
$$

Reach (TS) denotes the set of all reachable states in $T S$.

Detailed description of states

Variables; Predicates

Beverage vending machine revisited

"Abstract" transitions:

start $\xrightarrow{\text { true:coin }}$ select	and	start $\xrightarrow{\text { true:refill }}$ start
select $\xrightarrow[\text { nsprite }>0 \text { :sget }]{ }$ start	and	select $\xrightarrow{\text { nbeer }>0: \text { bget }}$ start

Action	Effect on variables
coin	
ret-coin	
sget	nsprite $:=$ nsprite -1
bget	nbeer $:=$ nbeer -1
refill	nsprite $:=$ max; nbeer $:=\max$

Program graph representation

Program graph representation

Some preliminaries

- typed variables with a valuation that assigns values in a fixed structure to variables
- e.g., $\beta(x)=17$ and $\beta(y)=-2$
- Boolean conditions: set of formulae over Var
- propositional logic formulas whose propositions are of the form " $x \in D$ "
$-(-3<x \leq 5) \wedge(y=$ green $) \wedge\left(x \leq 2 * x^{\prime}\right)$
- effect of the actions is formalized by means of a mapping:

$$
\text { Effect }: A c t \times E v a l(\text { Var }) \rightarrow E v a l(\text { Var })
$$

- e.g., $\alpha \equiv x:=y+5$ and evaluation $\beta(x)=17$ and $\beta(y)=-2$
- $\operatorname{Effect}(\alpha, \beta)(x)=\beta(y)+5=3$,
- $\operatorname{Effect}(\alpha, \beta)(y)=\beta(y)=-2$

Program graph representation

Program graphs

A program graph $P G$ over set Var of typed variables is a tuple

$$
\left(\text { Loc, Act, Effect, } \rightarrow, \text { Loc } 0, g_{0}\right)
$$

where

- Loc is a set of locations with initial locations $\operatorname{Loc}_{0} \subseteq \operatorname{Loc}$
- Act is a set of actions
- Effect : Act $\times \operatorname{Eval}($ Var $) \rightarrow \operatorname{Eval}($ Var $)$ is the effect function
- $\rightarrow \subseteq \operatorname{Loc} \times(\underbrace{\operatorname{Cond}(\text { Var })}_{\text {Boolean conditions on Var }} \times A c t) \times$ Loc, transition relation
- $g_{0} \in \operatorname{Cond}($ Var $)$ is the initial condition.

Notation: $I \xrightarrow{g: \alpha} I^{\prime}$ denotes $\left(I, g, \alpha, I^{\prime}\right) \in \rightarrow$.

Beverage Vending Machine

- Loc $=\{$ start, select $\}$ with Loc $0=\{$ start $\}$
- Act $=\{$ bget, sget, coin, ret-coin, refill $\}$
- Var $=\{$ nsprite, n beer $\}$ with domain $\{0,1, \ldots$, max $\}$
- Effect : Act \times Eval(Var) \rightarrow Eval(Var) defined as follows:

Effect $($ coin,$\beta)$	$=\beta$
Effect $($ ret-coin, $\beta)$	$=\beta$
Effect $($ sget,$\beta)$	$=\beta[$ nsprite $\mapsto \beta($ nsprite $)-1]$
Effect $($ bget,$\beta)$	$=\beta[$ nbeer $\mapsto \beta($ nbeer $)-1]$
Effect $($ refill, $\beta)$	$=\beta[$ nsprite $\mapsto \max$, nbeer $\mapsto \max]$

- $g_{0}=($ nsprite $=\max \wedge$ nbeer $=\max)$

From program graphs to transition systems

- Basic strategy: unfolding
- state $=$ location (current control) $I+$ data valuation β
- initial state $=$ initial location + data valuation satisfying the initial condition g_{0}
- Propositions and labeling
- propositions: "at l " and " $x \in D$ " for $D \subseteq \operatorname{dom}(x)$
- $\langle I, \beta\rangle$ is labeled with "at l " and all conditions that hold in β.
- $I \xrightarrow{g: \alpha} I^{\prime}$ and g holds in β then $<I, \beta>\xrightarrow{\alpha}<I^{\prime}$, Effect $(<I, \beta>)>$

Transition systems for program graphs

The transition system $T S(P G)$ of program graph

$$
P G=\left(\text { Loc, Act }, \text { Effect }, \rightarrow, L o c_{0}, g_{0}\right)
$$

over set Var of variables is the tuple $(S, A c t, \rightarrow, I, A P, L)$ where:

- $S=\operatorname{Loc} \times \operatorname{Eval}($ Var $)$
- $\rightarrow S \times A c t \times S$ is defined by the rule:

If $I \xrightarrow{g: \alpha} I^{\prime}$ and $\beta \models g$ then $<I, \beta>\xrightarrow{\alpha}<I^{\prime}, \operatorname{Effect}(<I, \beta>)>$

- $I=\left\{<I, \beta>\mid I \in \operatorname{Loc}_{0}, \beta \models g_{0}\right\}$
- $A P=\operatorname{Loc} \cup \operatorname{Cond}($ Var $)$ and
- $L(<I, \beta>)=\{I\} \cup\{g \in \operatorname{Cond}($ Var $) \mid \beta \models g\}$.

Transition systems for program graphs

Generalizations of transition systems

- More detailed description of states: Abstract state machines
- Emphasis on processes and their interdependency: CSP
- Durations: Timed automata
- Continuous evolution + discrete control: Hybrid automata

Abstract state machines (ASM)

Purpose
Formalism for modelling/formalising (sequential) algorithms
Not: Computability / complexity analysis

Invented/developed by
Yuri Gurevich, 1988

Old name
Evolving algebras

ASMs

Three Postulates

Sequential Time Postulate:

An algorithm can be described by defining a set of states, a subset of initial states, and a state transformation function

Abstract State Postulate:

States can be described as first-order structures
Bounded Exploration Postulate:
An algorithm explores only finitely many elements in a state to decide what the next state is. There is a finite number of names (terms) for all these "interesting" elements in all states.

Example: Computing Squares

Initial State

square $=0$
count $=0$

ASM for computing the square of input
if input <0 then
input $:=-$ input
else if input $>0 \wedge$ count $<$ input then
par
square $:=$ square + input
count $:=$ count +1
endpar

The Sequential Time Postulate

Sequential algorithm
An algorithm is associated with

- a set S of states
- a set $I \subseteq S$ of initial states
- A function $\tau: S \rightarrow S$ (the one-step transformation of the algorithm)

Run (computation)
A run (computation) is a sequence $X_{0}, X_{1}, X_{2} \ldots$ of states such that

- $X_{0} \in I$
- $\tau\left(X_{i}\right)=X_{i+1}$ for all $i \geq 0$

Remark

Remark: In this formalism, algorithms are deterministic
$\tau: S \rightarrow S$ can be also viewed as a relation $R \subseteq S \times\{\tau\} \times S$ with

$$
\left(s, \tau, s^{\prime}\right) \in R \text { iff } \tau(s)=s^{\prime}
$$

The Abstract State Postulate

States are first-order structures where

- all states have the same vocabulary (signature)
- the transformation τ does not change the base set (universe)
- S and I are closed under isomorphism
- if f is an isomorphism from a state X onto a state Y, then f is also an isomorphism from $\tau(X)$ onto $\tau(Y)$.

Example: Trees

Vocabulary

nodes:	unary, boolean:	the class of nodes (type/universe)
strings:	unary, boolean:	the class of strings
parent:	unary:	the parent node
firstChild:	unary:	the first child node
nextSibling:	unary:	the first sibling
label:	unary:	node label
c:	constant:	the current node

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where

- each symbol is assigned an arity $n \geq 0$
- symbols can be marked relational (predicates)
- symbols can be marked static (default: dynamic)

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where

- each symbol is assigned an arity $n \geq 0$
- symbols can be marked relational (predicates)
- symbols can be marked static (default: dynamic)

Remark: This is not a restriction

- predicates with arity n can be regarded as functions with arity
$s . . s \rightarrow$ bool
where s is the usual sort (for terms) and bool is a different sort
- The sort bool is described using a unary predicate Bool
- The sort Bool contains all formulae, in particular also \top, \perp ("relational constants")

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where

- each symbol is assigned an arity $n \geq 0$
- symbols can be marked relational (predicates)
- symbols can be marked static (default: dynamic)

Each signature contains

- the constant undef ("undefined")
- the relational constants \top (true), \perp (false)
- the unary relational symbols Boole, \neg
- the binary relational symbols $\wedge, \vee, \rightarrow, \leftrightarrow, \approx$

These special symbols are all static

Vocabulary (Signature)

Signatures: A signature is a finite set of function/predicate symbols, where

- each symbol is assigned an arity $n \geq 0$
- symbols can be marked static (default: dynamic)

Each signature contains

- the constant undef ("undefined")
- the relational constants true, false
- the unary relational symbols Boole, \neg
- the binary relational symbols $\wedge, \vee, \rightarrow, \leftrightarrow, \approx$

These special symbols are all static
There is an infinite set of variables
Terms are built as usual from variables and function symbols
Formulae are built as usual

First-order Structures (States)

First-order structures (states) consist of

- a non-empty universe (called BaseSet)
- an interpretation of the symbols in the signature

Restrictions on states

- 0,1 , undef \in BaseSet (different)
- $\perp_{\mathcal{A}}=0, \top_{\mathcal{A}}=1$
- undef $_{\mathcal{A}}=$ undef
- If f relational then $f_{\mathcal{A}}$: BaseSet $\rightarrow\{0,1\}$
- Boole $_{\mathcal{A}}=\{0,1\}$
- $\neg, \vee, \wedge, \rightarrow, \leftrightarrow$ are interpreted as usual

The reserve of a state

Reserve: Consists of the elements that are "unknown" in a state
The reserve of a state must be infinite

Extended States

Variable assignment
A function $\beta:$ Var \rightarrow BaseSet
(boolean variables are assigned 0 or 1)

Extended state

A pair (\mathcal{A}, β) consisting of a state \mathcal{A} and a variable assignment β.

Extended States

Variable assignment
A function $\beta:$ Var \rightarrow BaseSet
(boolean variables are assigned 0 or 1)

Extended state

A pair (\mathcal{A}, β) consisting of a state \mathcal{A} and a variable assignment β.

Evaluation of terms and formulae: as usual

Example: Trees

Vocabulary

nodes:	unary, boolean:	the class of nodes (type/universe)
strings:	unary, boolean:	the class of strings
parent:	unary:	the parent node
firstChild:	unary:	the first child node
nextSibling:	unary:	the first sibling
label:	unary:	node label
c:	constant:	the current node

Example: Trees

Terms
parent(parent(c))
label(firstChild(c))
parent $($ firstChild $(c))=c$
(Boolean, formula)
$\operatorname{nodes}(x) \rightarrow \operatorname{parent}(x)=\operatorname{parent}(\operatorname{nextSibling}(x))$
(x is a variable)

Isomorphism

Lemma (Isomorphism)
Isomorphic states (structures) are indistinguishable by ground terms:
Justification for postulate
Algorithm must have the same behaviour for indistinguishable states

Isomorphic states are different representations of the same abstract state!

State updates

Locations. A location is a pair (f, \bar{a}) with

- f an n-ary function symbol
- $\bar{a} \in$ BaseSet n an n-tuple

Examples

(parent, a), (firstChild, a), (nextSibling, a), (c,)

State updates

Locations. A location is a pair (f, \bar{a}) with

- f an n-ary function symbol
- $\bar{a} \in$ BaseSet n an n-tuple

Examples
(parent, a), (firstChild, a), (nextSibling, a), (c,)

An update is a triple (f, \bar{a}, b) with

- (f, \bar{a}) a location
- f not static
- $b \in$ BaseSet
- if f is relational, then $b \in\{0,1\}$

State updates

Locations. A location is a pair (f, \bar{a}) with

- f an n-ary function symbol
- $\bar{a} \in$ BaseSet n an n-tuple

Examples

(parent, a), (firstChild, a), (nextSibling, a), (c,)

An update is a triple (f, \bar{a}, b) with

- (f, \bar{a}) a location
- f not static

Intended meaning:
f is changed by changing $f(\bar{a})$ to b.

- $b \in$ BaseSet
- if f is relational, then $b \in\{0,1\}$

State updates

Locations. A location is a pair (f, \bar{a}) with

- f an n-ary function symbol
- $\bar{a} \in$ BaseSet n an n-tuple

Examples

(parent, a), (firstChild, a), (nextSibling, a), (c,)

An update is a triple (f, \bar{a}, b) with

- (f, \bar{a}) a location
- f not static
- $b \in$ BaseSet
- if f is relational, then $b \in\{t t, f f\} \quad$ An update is trivial if $f_{\mathcal{A}}(\bar{a})=b$

Generalizations of transition systems

- More detailed description of states: Abstract state machines
- Emphasis on processes and their interdependency: CSP
- Durations: Timed automata
- Continuous evolution + discrete control: Hybrid automata

Timed automata

- transition systems + timing constraints

Timed automata

A timed automaton is a finite automaton extended with a finite set of real-valued clocks. During a run of a timed automaton, clock values increase all with the same speed. Along the transitions of the automaton, clock values can be compared to integers. These comparisons form guards that may enable or disable transitions and by doing so constrain the possible behaviors of the automaton. Further, clocks can be reset.

Timed automata

A timed automaton is a finite automaton extended with a finite set of real-valued clocks. During a run of a timed automaton, clock values increase all with the same speed. Along the transitions of the automaton, clock values can be compared to integers. These comparisons form guards that may enable or disable transitions and by doing so constrain the possible behaviors of the automaton. Further, clocks can be reset.

Timed automata can be used to model and analyse the timing behavior of computer systems, e.g., real-time systems or networks.

Timed automata

Example: Simple Light Control

WANT: if press is issued twice quickly then the light will get brighter; otherwise the light is turned off.

Timed automata

Example: Simple Light Control

Solution: Add a real-valued clock x
Adding continuous variables to transition systems

Timed automata: Syntax

- A finite set Loc of locations
- A subset $L_{o c} \subseteq$ Loc of initial locations
- A finite set Act of labels (alphabet, actions)
- A finite set X of clocks
- Invariant $\operatorname{Inv}(I)$ for each location $I \in \operatorname{Loc:~(clock~constraint~over~} X$)
- A finite set E of edges. Each edge has:
- source location I, target location I^{\prime}
- label $a \in$ Act (empty labels also allowed)
- guard g (a clock constraint over X)
- a subset X^{\prime} of clocks to be reset

Timed automata: Semantics

For a timed automaton

$$
A=\left(L o c, L_{o c}, A c t, X,\left\{I n v_{l}\right\}_{I \in L o c}, E\right)
$$

define an infinite state transition system $S(A)$:

- States S : a state s is a pair (I, v), where l is a location, and v is a clock vector, mapping clocks in X to \mathbb{R}, satisfying $\operatorname{Inv}(/)$
- Initial States: (I, v) is initial state if I is in Loc_{0} and $v(x)=0$
- Elapse of time transitions: for each nonnegative real number d, $(I, v) \xrightarrow{d}(I, v+d)$ if both v and $v+d$ satisfy $\operatorname{Inv}(I)$
- Location switch transitions: $(I, v) \xrightarrow{a}\left(I^{\prime}, v^{\prime}\right)$ if there is an edge $\left(I, a, g, X^{\prime}, I^{\prime}\right)$ such that v satisfies g and $v^{\prime}=v\left[\left\{x \mapsto 0 \mid x \in X^{\prime}\right\}\right]$.

Timed automata

Example: Simple Light Control

Timed automaton:
Loc $=\{$ Off, Light, Bright $\}, \operatorname{Loc}_{0}=\{$ Off $\}, \quad$ Act $=\{$ Press $\}$
$X=\{x\} ; \operatorname{lnv}($ Off $)=\operatorname{Inv}($ Light $)=\operatorname{Inv}($ Bright $)=(x \geq 0)$
Edges: (Off, Press, $\top,\{x\}$, Light), (Light, Press, $x>3, \varnothing$, Off)
(Light, Press, $x \leq 3, \varnothing$, Bright), (Bright, Press, T, \varnothing, Off)

Timed automata

Example: Simple Light Control

States: (Off, v), (Light, v), (Bright, v) (v value of clock x).
Initial state: (Off, 0).
Transitions (Examples)
Elapse of time: (Off, 10) $\xrightarrow{5}(\mathrm{Off}, 15)$
Location switch: $(\mathrm{Off}, 10) \xrightarrow{\text { Press }}($ Light, 0$)$

