Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
10. November 2016

Exercises for "Formal Specification and Verification"
 Exercise sheet 2

Exercise 2.1:

Let F be the following formula:

$$
\neg[\neg(P \vee(\neg Q \vee R)) \vee(\neg(P \vee Q) \vee(P \vee R))]
$$

Convert F to CNF using the (optimized) satisfiability-preserving transformation described in the lecture.

Exercise 2.2:

Use a DPLL procedure to find a model of each of the following formulae, or prove that the particular formula has no model:
(1) $(P \vee \neg Q) \wedge(\neg P \vee Q) \wedge(Q \vee \neg R) \wedge(\neg Q \vee \neg R)$
(2) $(P \vee Q \vee \neg R) \wedge(P \vee \neg Q) \wedge(P \vee Q \vee R) \wedge(R \vee Q) \wedge(R \vee \neg Q) \wedge(\neg P \vee \neg R) \wedge \neg U$

Exercise 2.3:

Consider the following deductive system for propositional logic (with signature \neg, \rightarrow):

Axiom schemata:

(1) $\neg p \rightarrow(p \rightarrow q)$
(2) $p \rightarrow(q \rightarrow p)$
(3) $(p \rightarrow q) \rightarrow((\neg p \rightarrow q) \rightarrow q)$
(4) $(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))$

Inference rules

Modus Ponens: $\frac{p, \quad p \rightarrow q}{q}$
Give a proof for $F \rightarrow F$ in this system.
Hint: You can e.g. use instances of axiom schema 2 (twice), 4, and Modus Ponens (twice).

Exercise 2.4:

Give a proof for

$$
\Rightarrow((P \rightarrow(Q \rightarrow R)) \rightarrow((P \rightarrow Q) \rightarrow(P \rightarrow R)))
$$

in the sequent calculus for propositional logic presented in the lecture.

Exercise 2.5:

Consider the following boolean formula $F:=(P \wedge((Q \wedge \neg R) \vee(\neg Q \wedge R)))$.
(1) Construct a reduced OBDD B_{F} for F with the order $[P, Q, R]$ i.e. such that the root is a P-node followed by Q - and then R-nodes.
(2) Let B_{F} be the OBDD constructed previously. Construct the following OBDDs:
(a) restrict $\left(0, R, B_{F}\right)$;
(b) restrict $\left(1, R, B_{F}\right)$;
(c) $\operatorname{exists}\left(R, B_{F}\right)$.

You will be able to solve this exercise only after $O B D D$ and operations on $O B D D$ are introduced in the lecture on Tuesday, 15.11.2016.

Please submit your solution until Wednesday, November 16, 2016 at 11:00. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework FSW" in the subject.
- Put it in the box in Room B 222 .

