Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

November 22, 2016

Exercises for "Formal Specification and Verification" Exercise sheet 3

Exercise 3.1:

Let $\Sigma = (\Omega, \Pi)$ be a signature, where $\Omega = \{f/2, g/1, a/0, b/0\}$ and $\Pi = \{p/2\}$; let X be the set of variables $\{x, y, z\}$. Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae, which are neither?

- (a) $\neg p(g(a), f(x, y))$
- (b) $f(x,x) \approx x$
- (c) $p(f(x,a),x) \lor p(a,b)$
- (d) $p(\neg g(x), g(y))$
- (e) $\neg p(f(x,y))$
- (f) $p(a,b) \wedge p(x,y) \wedge y$
- (g) $\exists y(\neg p(f(y,y),y))$
- (h) $\forall x \forall y (g(p(x,y)) \approx g(x))$

Exercise 3.2:

Let $\Sigma = (S, \Omega, \Pi)$ be a many-sorted signature, where $S = \{int, list\}, \Omega = \{cons, car, cdr, nil, b\}$ and $\Pi = \{p\}$ with the following arities:

 $a(\operatorname{cons}) = \operatorname{int}, \operatorname{list} \to \operatorname{list} \quad a(\operatorname{car}) = \operatorname{list} \to \operatorname{int} \quad a(\operatorname{cdr}) = \operatorname{list} \to \operatorname{list}$ $a(\operatorname{nil}) = \to \operatorname{list} \quad (\text{i.e. nil is a constant of sort list})$ $a(b) = \to \operatorname{int} \quad (\text{i.e. } b \text{ is a constant of sort int})$ $a(p) = \operatorname{int}, \operatorname{list}.$

Let X_{int} be the set of variables of sort int containing $\{i, j, k\}$, and let X_{list} be the set of variables of sort list containing $\{x, y, z\}$. Let $X = \{X_{int}, X_{list}\}$.

Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae (in first-order logic with equality, where equality between terms of sort int is \approx_i and equality between terms of sort list is \approx_l), which are neither?

- (a) cons(cons(b, nil), nil)
- (b) cons(b, cons(b, nil))
- (c) $\neg p(b, cons(b, cons(b, nil)))$
- (d) $\neg p(cons(b, nil), cons(b, cons(b, nil)))$

- (e) $cons(b, cons(b, nil)) \approx_l cons(cons(x, b), nil)$
- (f) $cons(i, cons(b, nil)) \approx j$
- (g) $p(\neg \mathsf{car}(x), x)$
- (h) $\neg p(\mathsf{car}(x), x) \lor p(j, \mathsf{cons}(j, x))$
- (i) $\neg p(b, x) \lor p(b, \operatorname{cons}(b, x)) \lor b$
- (j) $\forall i : \mathsf{int}, \forall x : \mathsf{list} (\mathsf{cons}(\mathsf{car}(x), \mathsf{cdr}(x)) \approx_l x)$
- (k) $\exists i : \mathsf{int}, \forall y : \mathsf{list} (\mathsf{cons}(b, p(x, y)) \approx_l \mathsf{cdr}(y))$

Exercise 3.3:

Compute the results of the following substitutions:

(a) f(g(x), x)[g(a)/x](b) p(f(y, x), g(x))[x/y](c) $\forall y(p(f(y, x), g(y)))[x/y]$ (d) $\forall y(p(f(y, x), x))[y/x]$ (e) $\forall y(p(f(z, g(y)), g(x)) \lor \exists z(g(z) \approx y))[g(b)/z]$ (f) $\exists y(f(x, y) \approx x \rightarrow \forall x(f(x, y) \approx x))[g(y)/y, g(z)/x]$

Exercise 3.4:

Let $\Sigma = (\Omega, \Pi)$, where $\Omega = \{0/0, s/1, +/2\}$ and $\Pi = \emptyset$ (i.e. the only predicate symbol is \approx). Consider the following formulae in the signature Σ :

- 1. $F_1 = \forall x \ (x + 0 \approx x)$
- 2. $F_2 = \forall x, y \ (x + s(y) \approx s(x + y))$
- 3. $F_3 = \forall x, y \quad (x + y \approx y + x).$

Find a Σ -structure in which F_1 and F_2 are valid but F_3 is not.

Exercise 3.5:

 $\Sigma = (\Omega, \Pi)$ with $\Omega = \{b/0, f/1\}$ and $\Pi = \{p/1\}.$

- (1) How many different Herbrand interpretations over Σ exist? Explain briefly.
- (2) Consider the formula $F := p(f(f(b))) \land \forall x (p(x) \to p(f(x)))$. How many different Herbrand models over Σ does the formula F have? Explain briefly.
- (3) Every Herbrand interpretation which is a model of F is also a model of $G := \forall x \, p(f(f(x)))$. Give an example of an algebra that is a model of F but not of G.
- (4) Let \mathcal{A} be a Herbrand interpretation over Σ and let \sim be the binary relation on T_{Σ} defined by:

$$t_1 \sim t_2$$
 iff $\forall x (f(f(f(x))) = x) \models t_1 \approx t_2$

- Is ~ a congruence relation on \mathcal{A} ?
- Describe the quotient structure \mathcal{A}/\sim .
- Describe the class $\{\mathcal{A}/\sim \mid \mathcal{A} \text{ Herbrand interpretation over } \Sigma\}$.

Exercise 3.6:

Consider the following specification of binary trees (in a variant of the CASL syntax)

\mathbf{spec}	BinTree =	
	sort	elem, tree
	operations	$a: \rightarrow elem$
		$empty:\totree$
		$leaf:elem\totree$
		$make:tree,tree\totree$
		$right:tree\totree$
		$left:tree\totree$
	Axioms:	$\forall x_1, x_2 : tree, \forall e : elem:$
		• right(empty) $pprox$ empty
		• right(leaf(e)) \approx empty
		• left(empty) \approx empty
		• $left(leaf(e)) \approx empty$
		• left(make $(x_1, x_2)) \approx x_1$
		• right(make(x_1, x_2)) $\approx x_2$

- (1) Let \mathcal{F} be the set of axioms in the specification above. Which of the following hold?
 - (1a) $\mathcal{F} \models \mathsf{left}(\mathsf{make}(\mathsf{empty},\mathsf{empty})) \approx \mathsf{empty}$
 - (1b) $\mathcal{F} \models \mathsf{make}(x_1, x_2) = \mathsf{empty}$
 - (1c) $\mathcal{F} \models (x_2 \approx \mathsf{empty} \land x_3 \approx \mathsf{make}(x_1, \mathsf{empty})) \rightarrow \mathsf{make}(\mathsf{left}(\mathsf{make}(x_1, x_2)), \mathsf{right}(\mathsf{leaf}(e)) \approx x_3$
 - (1d) $\mathcal{F} \models \mathsf{make}(x_1, \mathsf{make}(x_2, x_3)) = x_2$
- (2) Let ~ be defined on T_{Σ} by:

$$t_1 \sim t_2 \text{ iff } \mathcal{F} \models t_1 \approx t_2$$

Describe the quotient algebra $\mathcal{T}_{\Sigma}/\sim$.

(3) Let \sim' be defined on T_{Σ} by

 $t_1 \sim' t_2$ iff $(\mathcal{F} \cup \{ \forall x \operatorname{left}(x) \approx \operatorname{right}(x) \} \models t_1 \approx t_2).$

Describe the quotient algebra $\mathcal{T}_{\Sigma}/{\sim'}$.

Please submit your solution until Wednesday, November 31, 2016 at 12:00. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework FSV" in the subject.
- Hand it in to me (Room B225) or drop it in the box in front of Room B224.