
372 6 Binary decision diagrams

and g denote the same boolean functions if, and only if, the reduced OBDDs
have identical structure.

Test for validity. We can test a function f(x1, x2, . . . , xn) for validity (i.e.
f always computes 1) in the following way. Compute a reduced OBDD for
f . Then f is valid if, and only if, its reduced OBDD is B1.

Test for implication. We can test whether f(x1, x2, . . . , xn) implies g(x1,

x2, . . . , xn) (i.e. whenever f computes 1, then so does g) by computing the
reduced OBDD for f · g. This is B0 iff the implication holds.

Test for satisfiability. We can test a function f(x1, x2, . . . , xn) for satis-
fiability (f computes 1 for at least one assignment of 0 and 1 values to its
variables). The function f is satisfiable iff its reduced OBDD is not B0.

6.2 Algorithms for reduced OBDDs

6.2.1 The algorithm reduce
The reductions C1–C3 are at the core of any serious use of OBDDs, for
whenever we construct a BDD we will want to convert it to its reduced form.
In this section, we describe an algorithm reduce which does this efficiently
for ordered BDDs.

If the ordering of B is [x1, x2, . . . , xl], then B has at most l + 1 layers. The
algorithm reduce now traverses B layer by layer in a bottom-up fashion,
beginning with the terminal nodes. In traversing B, it assigns an integer
label id(n) to each node n of B, in such a way that the subOBDDs with
root nodes n and m denote the same boolean function if, and only if, id(n)
equals id(m).

Since reduce starts with the layer of terminal nodes, it assigns the first
label (say #0) to the first 0-node it encounters. All other terminal 0-nodes
denote the same function as the first 0-node and therefore get the same label
(compare with reduction C1). Similarly, the 1-nodes all get the next label,
say #1.

Now let us inductively assume that reduce has already assigned integer
labels to all nodes of a layer > i (i.e. all terminal nodes and xj-nodes with
j > i). We describe how nodes of layer i (i.e. xi-nodes) are being handled.

Definition 6.8 Given a non-terminal node n in a BDD, we define lo(n) to
be the node pointed to via the dashed line from n. Dually, hi(n) is the node
pointed to via the solid line from n.

Let us describe how the labelling is done. Given an xi-node n, there are
three ways in which it may get its label:

6.2 Algorithms for reduced OBDDs 373

0 1#0 #10 1 0 1

x3 x3

x2x2

x1

#0 #1 #0 #1

#2 #2

#3 #2

#4

=⇒

x3

x2

x1

#2

#3

#4

Reduce

Figure 6.14. An example execution of the algorithm reduce.

� If the label id(lo(n)) is the same as id(hi(n)), then we set id(n) to be that label.
That is because the boolean function represented at n is the same function as the
one represented at lo(n) and hi(n). In other words, node n performs a redundant
test and can be eliminated by reduction C2.

� If there is another node m such that n and m have the same variable xi, and
id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), then we set id(n) to be id(m).
This is because the nodes n and m compute the same boolean function (compare
with reduction C3).

� Otherwise, we set id(n) to the next unused integer label.

Note that only the last case creates a new label. Consider the OBDD
in left side of Figure 6.14; each node has an integer label obtained in the
manner just described. The algorithm reduce then finishes by redirecting
edges bottom-up as outlined in C1–C3. The resulting reduced OBDD is in
right of Figure 6.14. Since there are efficient bottom-up traversal algorithms
for dags, reduce is an efficient operation in the number of nodes of an
OBDD.

6.2.2 The algorithm apply
Another procedure at the heart of OBDDs is the algorithm apply. It is
used to implement operations on boolean functions such as +, · , ⊕ and
complementation (via f ⊕ 1). Given OBDDs Bf and Bg for boolean formulas
f and g, the call apply (op, Bf , Bg) computes the reduced OBDD of the
boolean formula f op g, where op denotes any function from {0, 1} × {0, 1}
to {0, 1}.

374 6 Binary decision diagrams

The intuition behind the apply algorithm is fairly simple. The algorithm
operates recursively on the structure of the two OBDDs:

1. let v be the variable highest in the ordering (=leftmost in the list) which occurs
in Bf or Bg.

2. split the problem into two subproblems for v being 0 and v being 1 and solve
recursively;

3. at the leaves, apply the boolean operation op directly.

The result will usually have to be reduced to make it into an OBDD. Some
reduction can be done ‘on the fly’ in step 2, by avoiding the creation of a new
node if both branches are equal (in which case return the common result),
or if an equivalent node already exists (in which case, use it).

Let us make all this more precise and detailed.

Definition 6.9 Let f be a boolean formula and x a variable.

1. We denote by f [0/x] the boolean formula obtained by replacing all occurrences
of x in f by 0. The formula f [1/x] is defined similarly. The expressions f [0/x]
and f [1/x] are called restrictions of f .

2. We say that two boolean formulas f and g are semantically equivalent if they
represent the same boolean function (with respect to the boolean variables that
they depend upon). In that case, we write f ≡ g.

For example, if f(x, y) def= x · (y + x), then f [0/x](x, y) equals 0 · (y + 0),
which is semantically equivalent to 0. Similarly, f [1/y](x, y) is x · (1 + x),
which is semantically equivalent to x.

Restrictions allow us to perform recursion on boolean formulas, by decom-
posing boolean formulas into simpler ones. For example, if x is a variable in
f , then f is equivalent to x · f [0/x] + x · f [1/x]. To see this, consider the case
x = 0; the expression computes to f [0/x]. When x = 1 it yields f [1/x]. This
observation is known as the Shannon expansion, although it can already be
found in G. Boole’s book ‘The Laws of Thought’ from 1854.

Lemma 6.10 (Shannon expansion) For all boolean formulas f and all
boolean variables x (even those not occurring in f) we have

f ≡ x · f [0/x] + x · f [1/x]. (6.1)

The function apply is based on the Shannon expansion for f op g:

f op g = xi · (f [0/xi] op g[0/xi]) + xi · (f [1/xi] op g[1/xi]). (6.2)

This is used as a control structure of apply which proceeds from the roots

6.2 Algorithms for reduced OBDDs 375

0 1 0 1

x4

x3

x1

R5 R6

R4

R2

R1

R3

+

S1

S3

S4 S5

S2

x4

x2

x1

x3

Figure 6.15. An example of two arguments for a call apply (+, Bf , Bg).

of Bf and Bg downwards to construct nodes of the OBDD Bf op g. Let rf be
the root node of Bf and rg the root node of Bg.

1. If both rf and rg are terminal nodes with labels lf and lg, respectively (recall
that terminal labels are either 0 or 1), then we compute the value lf op lg and
let the resulting OBDD be B0 if that value is 0 and B1 otherwise.

2. In the remaining cases, at least one of the root nodes is a non-terminal. Suppose
that both root nodes are xi-nodes. Then we create an xi-node n with a dashed
line to apply (op, lo(rf), lo(rg)) and a solid line to apply (op,hi(rf),hi(rg)), i.e.
we call apply recursively on the basis of (6.2).

3. If rf is an xi-node, but rg is a terminal node or an xj-node with j > i,
then we know that there is no xi-node in Bg because the two OBDDs have
a compatible ordering of boolean variables. Thus, g is independent of xi
(g ≡ g[0/xi] ≡ g[1/xi]). Therefore, we create an xi-node n with a dashed line
to apply (op, lo(rf), rg) and a solid line to apply (op,hi(rf), rg).

4. The case in which rg is a non-terminal, but rf is a terminal or an xj-node with
j > i, is handled symmetrically to case 3.

The result of this procedure might not be reduced; therefore apply finishes
by calling the function reduce on the OBDD it constructed. An example of
apply (where op is +) can be seen in Figures 6.15–6.17. Figure 6.16 shows
the recursive descent control structure of apply and Figure 6.17 shows the
final result. In this example, the result of apply (+, Bf , Bg) is Bf .

Figure 6.16 shows that numerous calls to apply occur several times with
the same arguments. Efficiency could be gained if these were evaluated only

376 6 Binary decision diagrams

(R1, S1)

x1

x2 x3

(R3, S3)

(R2, S3) (R3, S2)

x4 x3

(R5, S4) (R6, S5) (R4, S3) (R6, S3)

(R4, S3) (R4, S3)

x4

(R5, S4) (R6, S5)

(R6, S5)

x4

(R6, S5)

x4

(R5, S4) (R6, S4)(R6, S5)

Figure 6.16. The recursive call structure of apply for the example in

Figure 6.15 (without memoisation).

0 1

x4

x3

x2

x1

Figure 6.17. The result of apply (+, Bf , Bg), where Bf and Bg are given

in Figure 6.15.

6.2 Algorithms for reduced OBDDs 377

the first time and the result remembered for future calls. This program-
ming technique is known as memoisation. As well as being more efficient,
it has the advantage that the resulting OBDD requires less reduction. (In
this example, using memoisation eliminates the need for the final call to
reduce altogether.) Without memoisation, apply is exponential in the size
of its arguments, since each non-leaf call generates a further two calls. With
memoisation, the number of calls to apply is bounded by 2 · |Bf | · |Bg|, where
|B| is the size of the BDD. This is a worst-time complexity; the actual per-
formance is often much better than this.

6.2.3 The algorithm restrict
Given an OBDD Bf representing a boolean formula f , we need an algo-
rithm restrict such that the call restrict(0, x, Bf) computes the reduced
OBDD representing f [0/x] using the same variable ordering as Bf . The al-
gorithm for restrict(0, x, Bf) works as follows. For each node n labelled
with x, incoming edges are redirected to lo(n) and n is removed. Then we
call reduce on the resulting OBDD. The call restrict (1, x, Bf) proceeds
similarly, only we now redirect incoming edges to hi(n).

6.2.4 The algorithm exists
A boolean function can be thought of as putting a constraint on the values
of its argument variables. For example, the function x+ (y · z) evaluates to 1
only if x is 1; or y is 0 and z is 1 – this is a constraint on x, y, and z.

It is useful to be able to express the relaxation of the constraint on a subset
of the variables concerned. To allow this, we write ∃x. f for the boolean
function f with the constraint on x relaxed. Formally, ∃x. f is defined as
f [0/x] + f [1/x]; that is, ∃x. f is true if f could be made true by putting x
to 0 or to 1. Given that ∃x. f def= f [0/x] + f [1/x] the exists algorithm can
be implemented in terms of the algorithms apply and restrict as

apply (+, restrict (0, x, Bf), restrict (1, x, Bf)) . (6.3)

Consider, for example, the OBDD Bf for the function f
def= x1 · y1 + x2 ·

y2 + x3 · y3, shown in Figure 6.19. Figure 6.20 shows restrict(0, x3, Bf)
and restrict(1, x3, Bf) and the result of applying + to them. (In this case
the apply function happens to return its second argument.)

We can improve the efficiency of this algorithm. Consider what happens
during the apply stage of (6.3). In that case, the apply algorithm works on
two BDDs which are identical all the way down to the level of the x-nodes;

378 6 Binary decision diagrams

10

x

x x

zy

Figure 6.18. An example of a BDD which is not a read-1-BDD.

10

x1

x2

x3

y1

y2

y3

Figure 6.19. A BDD Bf to illustrate the exists algorithm.

therefore the returned BDD also has that structure down to the x-nodes.
At the x-nodes, the two argument BDDs differ, so the apply algorithm
will compute the apply of + to these two subBDDs and return that as the
subBDD of the result. This is illustrated in Figure 6.20. Therefore, we can
compute the OBDD for ∃x. f by taking the OBDD for f and replacing each
node labelled with x by the result of calling apply on + and its two branches.

This can easily be generalised to a sequence of exists operations. We
write ∃x̂. f to mean ∃x1.∃x2. . . .∃xn. f , where x̂ denotes (x1, x2, . . . , xn).

6.2 Algorithms for reduced OBDDs 379

10

x1

x2

y1

y2

y3

10 10

x1

x2

y1

y2

x1

x2

y1

y2

y3

Figure 6.20. restrict(0, x3, Bf) and restrict(1, x3, Bf) and the result

of applying + to them.

10

x1

x2

x3

y1

y2

y3

10

x1

x2

y1

y2

y3

10

x1

y1

y2

y3

∃x3⇒ ∃x2⇒

Figure 6.21. OBDDs for f , ∃x3. f and ∃x2.∃x3. f .

The OBDD for this boolean function is obtained from the OBDD for f by
replacing every node labelled with an xi by the + of its two branches.

Figure 6.21 shows the computation of ∃x3. f and ∃x2.∃x3. f (which is
semantically equivalent to x1 · y1 + y2 + y3) in this way.
The boolean quantifier ∀ is the dual of ∃:

∀x.f def= f [0/x] · f [1/x]

asserting that f could be made false by putting x to 0 or to 1.
The translation of boolean formulas into OBDDs using the algorithms of

this section is summarised in Figure 6.22.

380 6 Binary decision diagrams

Boolean formula f Representing OBDD Bf

0 B0 (Fig. 6.6)

1 B1 (Fig. 6.6)

x Bx (Fig. 6.6)

f swap the 0- and 1-nodes in Bf
f + g apply (+, Bf , Bg)

f · g apply (· , Bf , Bg)
f ⊕ g apply (⊕, Bf , Bg)
f [1/x] restrict (1, x, Bf)

f [0/x] restrict (0, x, Bf)

∃x.f apply (+, Bf [0/x], Bf [1/x])

∀x.f apply (· , Bf [0/x], Bf [1/x])

Figure 6.22. Translating boolean formulas f to OBDDs Bf , given a

fixed, global ordering on boolean variables.

Algorithm Input OBDD(s) Output OBDD Time-complexity

reduce B reduced B O(|B| · log |B|)
apply Bf , Bg (reduced) Bf op g (reduced) O(|Bf | · |Bg|)
restrict Bf (reduced) Bf [0/x] or Bf [1/x] (reduced) O(|Bf | · log |Bf |)
∃ Bf (reduced) B∃x1.∃x2....∃xn.f (reduced) NP-complete

Figure 6.23. Upper bounds in terms of the input OBDD(s) for the

worst-case running times of our algorithms needed in our implementa-

tion of boolean formulas.

6.2.5 Assessment of OBDDs

Time complexities for computing OBDDs We can measure the com-
plexity of the algorithms of the preceding section by giving upper bounds
for the running time in terms of the sizes of the input OBDDs. The table
in Figure 6.23 summarises these upper bounds (some of those upper bounds
may require more sophisticated versions of the algorithms than the versions
presented in this chapter). All the operations except nested boolean quantifi-
cation are practically efficient in the size of the participating OBDDs. Thus,
modelling very large systems with this approach will work if the OBDDs

6.2 Algorithms for reduced OBDDs 381

which represent the systems don’t grow too large too fast. If we can some-
how control the size of OBDDs, e.g. by using good heuristics for the choice
of variable ordering, then these operations are computationally feasible. It
has already been shown that OBDDs modelling certain classes of systems
and networks don’t grow excessively.

The expensive computational operations are the nested boolean quantifi-
cations ∃z1. . . .∃zn.f and ∀z1. . . .∀zn.f . By exercise 1 on page 406, the com-
putation of the OBDD for ∃z1. . . .∃zn.f , given the OBDD for f , is an NP-
complete problem2; thus, it is unlikely that there exists an algorithm with
a feasible worst-time complexity. This is not to say that boolean functions
modelling practical systems may not have efficient nested boolean quan-
tifications. The performance of our algorithms can be improved by using
further optimisation techniques, such as parallelisation.

Note that the operations apply, restrict, etc. are only efficient in the
size of the input OBDDs. So if a function f does not have a compact repre-
sentation as an OBDD, then computing with its OBDD will not be efficient.
There are such nasty functions; indeed, one of them is integer multiplication.
Let bn−1bn−2 . . . b0 and an−1an−2 . . . a0 be two n-bit integers, where bn−1 and
an−1 are the most significant bits and b0 and a0 are the least significant bits.
The multiplication of these two integers results in a 2n-bit integer. Thus, we
may think of multiplication as 2n many boolean functions fi in 2n variables
(n bits for input b and n bits for input a), where fi denotes the ith output
bit of the multiplication. The following negative result, due to R. E. Bryant,
shows that OBDDs cannot be used for implementing integer multiplication.

Theorem 6.11 Any OBDD representation of fn−1 has at least a number
of vertices proportional to 1.09n, i.e. its size is exponential in n.

Extensions and variations of OBDDs There are many variations and
extensions to the OBDD data structure. Many of them can implement cer-
tain operations more efficiently than their OBDD counterparts, but it seems
that none of them perform as well as OBDDs overall. In particular, one fea-
ture which many of the variations lack is the canonical form; therefore they
lack an efficient algorithm for deciding when two objects denote the same
boolean function.

One kind of variation allows non-terminal nodes to be labelled with bi-
nary operators as well as boolean variables. Parity OBDDs are like OBDDs
in that there is an ordering on variables and every variable may occur at

2 Another NP-complete problem is to decide the satisfiability of formulas of propositional logic.

382 6 Binary decision diagrams

most once on a path; but some non-terminal nodes may be labelled with ⊕,
the exclusive-or operation. The meaning is that the function represented by
that node is the exclusive-or of the boolean functions determined by its chil-
dren. Parity OBDDs have similar algorithms for apply, restrict, etc. with
the same performance, but they do not have a canonical form. Checking for
equivalence cannot be done in constant time. There is, however, a cubic algo-
rithm for determining equivalence; and there are also efficient probabilistic
tests. Another variation of OBDDs allows complementation nodes, with the
obvious meaning. Again, the main disadvantage is the lack of canonical form.

One can also allow non-terminal nodes to be unlabelled and to branch
to more than two children. This can then be understood either as non-
deterministic branching, or as probabilistic branching: throw a pair of dice
to determine where to continue the path. Such methods may compute wrong
results; one then aims at repeating the test to keep the (probabilistic)
error as small as desired. This method of repeating probabilistic tests is
called probabilistic amplification. Unfortunately, the satisfiability problem
for probabilistic branching OBDDs is NP-complete. On a good note, prob-
abilistic branching OBDDs can verify integer multiplication.

The development of extensions or variations of OBDDS which are cus-
tomised to certain classes of boolean functions is an important area of on-
going research.

6.3 Symbolic model checking

The use of BDDs in model checking resulted in a significant breakthrough in
verification in the early 1990s, because they have allowed systems with much
larger state spaces to be verified. In this section, we describe in detail how
the model-checking algorithm presented in Chapter 3 can be implemented
using OBDDs as the basic data structure.

The pseudo-code presented in Figure 3.28 on page 227 takes as input a
CTL formula φ and returns the set of states of the given model which satisfy
φ. Inspection of the code shows that the algorithm consists of manipulating
intermediate sets of states. We show in this section how the model and the
intermediate sets of states can be stored as OBDDs; and how the operations
required in that pseudo-code can be implemented in terms of the operations
on OBDDs which we have seen in this chapter.

We start by showing how sets of states are represented with OBDDs,
together with some of the operations required. Then, we extend that to
the representation of the transition system; and finally, we show how the
remainder of the required operations is implemented.

