Formal Specification and Verification

Deductive Verification: An introduction
7.02.2017

Viorica Sofronie-Stokkermans
e-mail: sofronie@uni-koblenz.de

Overview

- Model checking:

Finite transition systems / CTL properties
States are "entities" (no precise description, except for labelling functions)

No precise description of actions (only \rightarrow important)

Overview

- Model checking:

Finite transition systems / CTL properties
States are "entities" (no precise description, except for labelling functions)
No precise description of actions (only \rightarrow important)

Extensions in two possible directions:

- More precise description of the actions/events
- Propositional Dynamic Logic
(last time)
- Hoare logic (not discussed in this lecture)
- More precise description of states (and possibly also of actions)
- succinct representation: formulae represent a set of states
- deductive verification
(today)

Transition systems (Reminder)

- Model to describe the behaviour of systems
- Digraphs where nodes represent states, and edges model transitions
- State: Examples
- the current colour of a traffic light
- the current values of all program variables + the program counter
- the current value of the registers together with the values of the input bits
- Transition ("state change"): Examples
- a switch from one colour to another
- the execution of a program statement
- the change of the registers and output bits for a new input

Transition systems

Definition.

A transition system $T S$ is a tuple $(S, A c t, \rightarrow, I, A P, L)$ where:

- S is a set of states
- Act is a set of actions
- $\rightarrow \subseteq S \times$ Act $\times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- $A P$ is a set of atomic propositions
- $L: S \rightarrow 2^{A P}$ is a labeling function
S and Act are either finite or countably infinite
Notation: $s \xrightarrow{\alpha} s^{\prime}$ instead of $\left(s, \alpha, s^{\prime}\right) \in \rightarrow$.

Programs and transition systems

Program graph representation

Program graph representation

Some preliminaries

- typed variables with a valuation that assigns values in a fixed structure to variables
- e.g., $\beta(x)=17$ and $\beta(y)=-2$
- Boolean conditions: set of formulae over Var
- propositional logic formulas whose propositions are of the form " $x \in D$ "
$-(-3<x \leq 5) \wedge(y=$ green $) \wedge\left(x \leq 2 * x^{\prime}\right)$
- effect of the actions is formalized by means of a mapping:

$$
\text { Effect }: A c t \times E v a l(\text { Var }) \rightarrow E v a l(\text { Var })
$$

- e.g., $\alpha \equiv x:=y+5$ and evaluation $\beta(x)=17$ and $\beta(y)=-2$
- $\operatorname{Effect}(\alpha, \beta)(x)=\beta(y)+5=3$,
- $\operatorname{Effect}(\alpha, \beta)(y)=\beta(y)=-2$

Program graph representation

Program graphs

A program graph $P G$ over set Var of typed variables is a tuple

$$
\left(\text { Loc, Act, Effect, } \rightarrow, \text { Loc } 0, g_{0}\right)
$$

where

- Loc is a set of locations with initial locations $\operatorname{Loc}_{0} \subseteq \operatorname{Loc}$
- Act is a set of actions
- Effect : Act $\times \operatorname{Eval}($ Var $) \rightarrow \operatorname{Eval}($ Var $)$ is the effect function
- $\rightarrow \subseteq \operatorname{Loc} \times(\underbrace{\operatorname{Cond}(\text { Var })}_{\text {Boolean conditions on Var }} \times A c t) \times$ Loc, transition relation
- $g_{0} \in \operatorname{Cond}($ Var $)$ is the initial condition.

Notation: $I \xrightarrow{g: \alpha} I^{\prime}$ denotes $\left(I, g, \alpha, I^{\prime}\right) \in \rightarrow$.

From program graphs to transition systems

- Basic strategy: unfolding
- state $=$ location (current control) $I+$ data valuation β
- initial state $=$ initial location + data valuation satisfying the initial condition g_{0}
- Propositions and labeling
- propositions: "at l " and " $x \in D$ " for $D \subseteq \operatorname{dom}(x)$
- $\langle I, \beta\rangle$ is labeled with "at l " and all conditions that hold in β.
- $I \xrightarrow{g: \alpha} I^{\prime}$ and g holds in β then $<I, \beta>\xrightarrow{\alpha}<I^{\prime}$, Effect $(<I, \beta>)>$

Transition systems for program graphs

The transition system $T S(P G)$ of program graph

$$
P G=\left(\text { Loc, Act }, \text { Effect }, \rightarrow, L o c_{0}, g_{0}\right)
$$

over set Var of variables is the tuple $(S, A c t, \rightarrow, I, A P, L)$ where:

- $S=\operatorname{Loc} \times \operatorname{Eval}($ Var $)$
- $\rightarrow S \times A c t \times S$ is defined by the rule:

If $I \xrightarrow{g: \alpha} I^{\prime}$ and $\beta \models g$ then $<I, \beta>\xrightarrow{\alpha}<I^{\prime}, \operatorname{Effect}(<I, \beta>)>$

- $I=\left\{<I, \beta>\mid I \in \operatorname{Loc}_{0}, \beta \models g_{0}\right\}$
- $A P=\operatorname{Loc} \cup \operatorname{Cond}($ Var $)$ and
- $L(<I, \beta>)=\{I\} \cup\{g \in \operatorname{Cond}($ Var $) \mid \beta \models g\}$.

Problem

Set of states: $S=$ Loc $\times \operatorname{Eval}($ Var $)$

Eval(Var) can be very large (some variables can have values in large data domains e.g. integers)

Therefore it is also difficult to concretely represent \rightarrow (the relation usually very large as well)

Solution

Succinct representation of sets of states and of transitions between states

- Set of states: Formula (property of all states in the set)
- Transitions: Formulae (relation between the old values of the variables and the new values of the variables)

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
        x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```


Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
        x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```


States:

(I, β), where $/$ location and β assignment of values to the variables.

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
        x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```


States:

(I, β), where / location and β assignment of values to the variables.
Idea: Take into account an additional variable pc (program counter), having as domain the set of locations.

State: assignment of values to the variables and to pc

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
        x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```


States:

(I, β), where I location and β assignment of values to the variables.
Idea: Take into account an additional variable pc (program counter), having as domain the set of locations.

State: assignment of values to the variables and to pc

Set of states: Logical formula
Example:
$y \geq z$: The set of all states (I, β) for which $\beta(y) \geq \beta(z)$ (i.e. $\beta \models y \geq z$)

Example

```
1: if (y >= z) then skip else halt;
2: while ( \(\mathrm{x}<\mathrm{y}\) ) \{
        x++;
    \}
3: if ( \(\mathrm{x}>=\mathrm{z}\) ) then skip else goto 5;
4: exit
5: error
```

Transition relation: $(I, \beta) \rightarrow\left(I^{\prime}, \beta^{\prime}\right)$

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
    x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```

Transition relation: $(I, \beta) \rightarrow\left(I^{\prime}, \beta^{\prime}\right)$
Expressed by logical formulae: Formula containing primed and unprimed variables. Example:

- $\rho_{1}=\left(\operatorname{move}\left(I_{1}, l_{2}\right) \wedge y \geq z \wedge \operatorname{skip}(x, y, z)\right)$
- $\rho_{2}=\left(\operatorname{move}\left(l_{2}, l_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right)$
- $\rho_{3}=\left(\operatorname{move}\left(I_{2}, l_{3}\right) \wedge x \geq y \wedge \operatorname{skip}(x, y, z)\right)$
- $\rho_{4}=\left(\operatorname{move}\left(I_{3}, I_{4}\right) \wedge x \geq z \wedge \operatorname{skip}(x, y, z)\right)$
- $\rho_{5}=\left(\operatorname{move}\left(I_{3} ; I_{5}\right) \wedge x+1 \leq z \wedge \operatorname{skip}(x, y, z)\right)$

Abbreviations:

$$
\begin{aligned}
& \operatorname{move}\left(I, I^{\prime}\right):=\left(p c=I \wedge p c^{\prime}=I^{\prime}\right) \\
& \operatorname{skip}\left(v_{1}, \ldots, v_{n}\right):=\left(v_{1}^{\prime}=v_{1} \wedge \cdots \wedge v_{n}^{\prime}=v_{n}\right)
\end{aligned}
$$

Programs as transition systems

Verification problem: Program + Description of the "bad" states
Succinct representation:

$$
P=(\text { Var, pc, Init }, \mathcal{R}) \quad \phi_{\mathrm{err}}
$$

- V - finite (ordered) set of program variables
- $p c$ - program counter variable ($p c$ included in V)
- Init - initiation condition given by formula over V
- \mathcal{R} - a finite set of transition relations

Every transition relation $\rho \in \mathcal{R}$ is given by a formula over the variables V and their primed versions V^{\prime}

- $\phi_{\text {err }}$ - an error condition given by a formula over V

More details: next time.

