Formal Specification and Verification

Propositional Dynamic Logic 1
30.01.2017

Viorica Sofronie-Stokkermans
e-mail: sofronie@uni-koblenz.de

Overview

- Model checking:

Finite transition systems / CTL properties
States are "entities" (no precise description, except for labelling functions)

No precise description of actions (only \rightarrow important)

Overview

- Model checking:

Finite transition systems / CTL properties
States are "entities" (no precise description, except for labelling functions)
No precise description of actions (only \rightarrow important)

Extensions in two possible directions:

- More precise description of the actions/events
- Propositional Dynamic Logic
- Hoare logic
- More precise description of states (and possibly also of actions)
- succinct representation: formulae represent a set of states
- deductive verification

Motivation

Example Program: Square

```
I := 0;
Y := 0;
while I < X do
    Y := Y+2*I+1;
    I := I+1
od
```

We would like to prove something like " $A \diamond($ terminated $\wedge \mathrm{Y}=\mathrm{X} * \mathrm{X})$ ".

Motivation

Example Program: Square

$$
\begin{aligned}
& \mathrm{I}:=0 ; \\
& \mathrm{Y}:=0 ; \\
& \text { while } \mathrm{I}<\mathrm{X} \text { do } \\
& \mathrm{Y}:=\mathrm{Y}+2 * \mathrm{I}+1 ; \\
& \mathrm{I}:=\mathrm{I}+1 \\
& \text { od }
\end{aligned}
$$

We would like to prove something like " $A \diamond($ terminated $\wedge Y=X * X)$ ".

Motivation

Example Program: Square

$$
\begin{aligned}
& \text { I }:=0 ; \\
& \mathrm{Y}:=0 ; \\
& \text { while } \mathrm{I}<\mathrm{X} \text { do } \\
& \mathrm{Y}:=\mathrm{Y}+2 * \mathrm{I}+1 ; \\
& \mathrm{I}:=\mathrm{I}+1 \\
& \text { od }
\end{aligned}
$$

We would like to prove something like " $A \diamond($ terminated $\wedge \mathrm{Y}=\mathrm{X} * \mathrm{X})$ ".
CTL* too weak: Transitions carry meaning.
Dynamic Logic: [prog] $\mathrm{Y}=\mathrm{X} * \mathrm{X}$

Motivation

A Simple Programming Language

Logical basis
Typed first-order predicate logic
(Types, variables, terms, formulas, . . .)
Assumption for examples
The signature contains a type Nat and appropriate symbols:

- function symbols $0, s,+, *$
(terms s(0), s(s(0)), . . written as $1,2, \ldots$)
- predicate symbols $\doteq, \leq,<, \geq,>$

NOTE: This is a "convenient assumption" not a definition

Motivation

Programs

- Assignments: $X:=t \quad X$: variable, $t:$ term
- Test: if B then a else b fi
B : quant.-free formula, a, b : programs
- Loop: while B do a od
B : quantifier-free formula, a: program
- Composition: $a ; b \quad a, b$ programs

WHILE is computationally complete

Motivation

WHILE: Examples
Assignment: Compute the square of X and store it in Y

$$
Y:=X * X
$$

Test: If X is positive then add one else subtract one

$$
\text { if } X>0 \text { then } X:=X+1 \text { else } X:=X-1 \mathrm{fi}
$$

Motivation

WHILE: Example - Square of a Number
Program with a while loop and composition:
Compute the square of X (the complicated way)
Making use of: $n^{2}=1+3+5+\cdots+(2 * n-1)$
I := 0;
Y := 0;
while I < X do
$\mathrm{Y}:=\mathrm{Y}+2 * \mathrm{I}+1$;
I := I+1
od

Motivation

WHILE: Operational Semantics

Given

A (fixed) first-order structure \mathcal{A} interpreting the function and predicate symbols in the signature

State

$s=(\mathcal{A}, \beta)$ where β is a variable assignment (i.e. function interpreting the variables)

Motivation

State update
$s[e / X]=(\mathcal{A}, \beta[X \mapsto e])$
with $\beta[X \mapsto e](Y)= \begin{cases}e & \text { if } Y=X \\ \beta(Y) & \text { otherwise }\end{cases}$

Motivation

Define the relation $R(\alpha)$ as follows (we write $s[\alpha] s^{\prime}$ instead of $s R(\alpha) s^{\prime}$):

- $s[X:=t] s^{\prime}$ iff $s^{\prime}=s[s(t) / X]$
- $s\left[\right.$ if B then α else β fi] s^{\prime} iff $s \models B$ and $s[\alpha] s^{\prime}$ or $s \models \neg B$ and $s[\beta] s^{\prime}$.
- s [while B do α od] s^{\prime} iff there are states $s=s_{0}, \ldots, s_{t}=s^{\prime}$ s.t. $s_{i} \models B$ for $0 \leq i \leq t-1$ and $s_{t} \models \neg B$ and $s_{0}[\alpha] s_{1}, s_{1}[\alpha] s_{2}, \ldots, s_{t-1}[\alpha] s_{t}$
- $s[\alpha ; \beta] s^{\prime}$ iff there is a state $s^{\prime \prime}$ such that $s[\alpha] s^{\prime \prime}$ and $s^{\prime \prime}[\beta] s^{\prime}$

If α is a deterministic program, $[\alpha]$ is a partial function.

Motivation

A Different Approach to WHILE

Programs

- $X:=t$ (atomic program)
- $\alpha ; \beta$ (sequential composition)
- $\alpha \cup \beta$ (non-deterministic choice)
- α^{*} (non-deterministic iteration, n times for some $n \geq 0$)
- F ? (test)
remains in initial state if F is true, does not terminate if F is false

Motivation

Restriction to deterministic programs
Non-deterministic program constructors may only be used in
if B then α else β fi $\equiv(B ? ; \alpha) \cup((\neg B)$?; $\beta)$
while B do α od $\equiv(B ? ; \alpha)^{*} ;(\neg B)$?

Motivation

Expressing Program Properties

Logic for expressing properties
Full first-order logic (usually with arithmetic)
Partial correctness assertion (Hoare formula)

$$
\{P\} \alpha\{Q\}
$$

Meaning:
If α is started in a state satisfying P and terminates, then its final state satisfies Q.

Formally:
$\{P\} \alpha\{Q\}$ is valid iff for all states s, s^{\prime}, if $s \models P$ and $s[\alpha] s^{\prime}$, then $s^{\prime} \models Q$.

Examples

$\{X>0\} X:=X+1\{X>1\}$
$\{\operatorname{even}(X)\} X:=X+2\{\operatorname{even}(X)\}$
where even $(X) \equiv \exists Z(X=2 * Z)$
$\{$ true $\} \alpha_{\text {square }}\{Y=X * X\}$

Examples

$\{X>0\} X:=X+1\{X>1\}$
$\{\operatorname{even}(X)\} X:=X+2\{\operatorname{even}(X)\}$
where even $(X) \equiv \exists Z(X=2 * Z)$
$\{$ true $\} \alpha_{\text {square }}\{Y=X * X\}$

Verification: Use annotation of programs with "invariants"

Dynamic Logic

The idea of dynamic logic

- Annotated programs use formulas within programs
- Dynamic Logic uses programs within formulas
- Instead of "assert F" after program segment α, write: $[\alpha] F$
\mapsto multi-modal logic

Dynamic Logic

Dynamic logic is a language for specifying programming languages.

The original work on dynamic logic is by Vaughan Pratt (1976) and by David Harel (1979).

Propositional Dynamic Logic

Propositional dynamic logic (PDL) is a multi-modal logic with structured modalities.

For each program α, there is:

- a box-modality $[\alpha]$ and
- a diamond modality $\langle\alpha\rangle$.

PDL was developed from first-order dynamic logic by Fischer-Ladner (1979) and has become popular recently.

Here we consider regular PDL.

Propositional Dynamic Logic

Syntax

Prog set of programs
$\operatorname{Prog}_{0} \subseteq$ Prog: set of atomic programs
Π : set of propositional variables

The set of formulae $\mathbf{F m a}_{\text {Prog, } \Pi \text { (}}^{P D L}$ of (regular) propositional dynamic logic and the set of programs Prog are defined by simultaneous induction as follows:

PDL: Syntax

Formulae:

$F, G, H \quad::=$	\perp	(falsum)
\|	T	(verum)
\|	p	$p \in \Pi$ (atomic formula)
\|	$\neg F$	(negation)
\|	$(F \wedge G)$	(conjunction)
\|	$(F \vee G)$	(disjunction)
\|	$(F \rightarrow G)$	(implication)
\|	$(F \leftrightarrow G)$	(equivalence)
\|	$[\alpha] F$	if $\alpha \in$ Prog
\|	$\langle\alpha\rangle F$	if $\alpha \in \operatorname{Prog}$

Programs:

α, β, γ	$::=$	α_{0}	$\alpha_{0} \in \operatorname{Prog}_{0}$ (atomic program)
	$\|$$F ?$ F formula (test) $\alpha ; \beta$	(sequential composition)	
		α^{*}	(non-deterministic choice)
(non-deterministic repetition)			

