Formal Specification and Verification

Propositional Dynamic Logic 1

30.01.2017

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Overview

• Model checking:

```
Finite transition systems / CTL properties
```

States are "entities" (no precise description, except for labelling functions)

No precise description of actions (only → important)

Overview

Model checking:

Finite transition systems / CTL properties

States are "entities" (no precise description, except for labelling functions)

No precise description of actions (only \rightarrow important)

Extensions in two possible directions:

- More precise description of the actions/events
 - Propositional Dynamic Logic
 - Hoare logic
- More precise description of states (and possibly also of actions)
 - succinct representation: formulae represent a set of states
 - deductive verification

Example Program: Square

```
I := 0;
Y := 0;
while I < X do
    Y := Y+2*I+1;
    I := I+1
od</pre>
```

We would like to prove something like " $A \diamondsuit (\text{terminated} \land Y = X * X)$ ".

Example Program: Square

We would like to prove something like " $A \diamondsuit (\text{terminated} \land Y = X * X)$ ".

Example Program: Square

```
I := 0;

Y := 0;

while I < X do

Y := Y+2*I+1;

I := I+1

od
```

We would like to prove something like " $A \diamondsuit (\text{terminated} \land Y = X * X)$ ".

CTL* too weak: Transitions carry meaning.

Dynamic Logic: [prog]Y=X*X

A Simple Programming Language

Logical basis

```
Typed first-order predicate logic (Types, variables, terms, formulas, . . . )
```

Assumption for examples

The signature contains a type Nat and appropriate symbols:

- function symbols 0, s, +, * (terms $s(0), s(s(0)), \ldots$ written as $1, 2, \ldots$)
- predicate symbols =, \leq , <, \geq , >

NOTE: This is a "convenient assumption" not a definition

Programs

- Assignments: X := t X: variable, t:term
- Test: if B then a else b fi
 B: quant.-free formula, a, b: programs
- Loop: while B do a od
 B: quantifier-free formula, a: program
- Composition: a; b a, b programs

WHILE is computationally complete

WHILE: Examples

Assignment: Compute the square of X and store it in Y

$$Y := X * X$$

Test: If X is positive then add one else subtract one

if
$$X > 0$$
 then $X := X + 1$ else $X := X - 1$ fi

WHILE: Example - Square of a Number

Program with a while loop and composition:

Compute the square of X (the complicated way)

```
Making use of: n^2 = 1 + 3 + 5 + \cdots + (2 * n - 1)
```

```
I := 0;
Y := 0;
while I < X do
    Y := Y+2*I+1;
    I := I+1
od</pre>
```

WHILE: Operational Semantics

Given

A (fixed) first-order structure ${\cal A}$ interpreting the function and predicate symbols in the signature

State

 $s = (A, \beta)$ where β is a variable assignment (i.e. function interpreting the variables)

State update

$$s[e/X] = (\mathcal{A}, \beta[X \mapsto e])$$

with $\beta[X \mapsto e](Y) = \begin{cases} e & \text{if } Y = X \\ \beta(Y) & \text{otherwise} \end{cases}$

Define the relation $R(\alpha)$ as follows (we write $s[\alpha]s'$ instead of $sR(\alpha)s'$):

- s[X := t]s' iff s' = s[s(t)/X]
- $s[if B then \alpha else \beta fi]s' iff <math>s \models B and s[\alpha]s' or s \models \neg B and s[\beta]s'$.
- $s[\text{while } B \text{ do } \alpha \text{ od}]s'$ iff there are states $s = s_0, \ldots, s_t = s'$ s.t. $s_i \models B \text{ for } 0 \leq i \leq t-1 \text{ and } s_t \models \neg B \text{ and } s_0[\alpha]s_1, s_1[\alpha]s_2, \ldots, s_{t-1}[\alpha]s_t$
- $s[\alpha; \beta]s'$ iff there is a state s'' such that $s[\alpha]s''$ and $s''[\beta]s'$

If α is a deterministic program, $[\alpha]$ is a partial function.

A Different Approach to WHILE

Programs

- X := t (atomic program)
- α ; β (sequential composition)
- $\alpha \cup \beta$ (non-deterministic choice)
- α^* (non-deterministic iteration, n times for some $n \geq 0$)
- F? (test)
 remains in initial state if F is true,
 does not terminate if F is false

Restriction to deterministic programs

Non-deterministic program constructors may only be used in

if B then
$$\alpha$$
 else β fi \equiv (B?; α) \cup ((\neg B)?; β)

while *B* do
$$\alpha$$
 od \equiv (*B*?; α)*; $(\neg B)$?

Expressing Program Properties

Logic for expressing properties

Full first-order logic (usually with arithmetic)

Partial correctness assertion (Hoare formula)

$$\{P\}\alpha\{Q\}$$

Meaning:

If α is started in a state satisfying P and terminates, then its final state satisfies Q.

Formally:

 $\{P\}\alpha\{Q\}$ is valid iff for all states s, s', if $s \models P$ and $s[\alpha]s'$, then $s' \models Q$.

Examples

$${X > 0}X := X + 1{X > 1}$$

$$\{\operatorname{even}(X)\}X := X + 2\{\operatorname{even}(X)\}$$

where $\operatorname{even}(X) \equiv \exists Z(X = 2 * Z)$

$$\{true\}\alpha_{square}\{Y = X * X\}$$

Examples

$${X > 0}X := X + 1{X > 1}$$

$$\{\operatorname{even}(X)\}X := X + 2\{\operatorname{even}(X)\}$$

where $\operatorname{even}(X) \equiv \exists Z(X = 2 * Z)$

$$\{true\}\alpha_{square}\{Y = X * X\}$$

Verification: Use annotation of programs with "invariants"

Dynamic Logic

The idea of dynamic logic

- Annotated programs use formulas within programs
- Dynamic Logic uses programs within formulas
- Instead of "assert F" after program segment α , write: $[\alpha]F$
- \mapsto multi-modal logic

Dynamic Logic

Dynamic logic is a language for specifying programming languages.

The original work on dynamic logic is by Vaughan Pratt (1976) and by David Harel (1979).

Propositional Dynamic Logic

Propositional dynamic logic (PDL) is a multi-modal logic with structured modalities.

For each program α , there is:

- a box-modality $[\alpha]$ and
- a diamond modality $\langle \alpha \rangle$.

PDL was developed from first-order dynamic logic by Fischer-Ladner (1979) and has become popular recently.

Here we consider regular PDL.

Propositional Dynamic Logic

Syntax

Prog set of programs

 $Prog_0 \subseteq Prog$: set of atomic programs

 Π : set of propositional variables

The set of formulae $\mathbf{Fma_{Prog,\Pi}^{PDL}}$ of (regular) propositional dynamic logic and the set of programs \mathbf{Prog} are defined by simultaneous induction as follows:

PDL: Syntax

Formulae:

Programs:

$$\alpha, \beta, \gamma$$
 ::= α_0 $\alpha_0 \in \operatorname{Prog}_0$ (atomic program)

| F ?
| F formula (test)
| α, β (sequential composition)
| $\alpha \cup \beta$ (non-deterministic choice)
| α^* (non-deterministic repetition)