
Formal Specification and Verification

Propositional Dynamic Logic (2)

7.02.2017

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Propositional Dynamic Logic

Propositional dynamic logic (PDL) is a multi-modal logic with structured

modalities.

For each program α, there is:

– a box-modality [α] and

– a diamond modality 〈α〉.

PDL was developed from first-order dynamic logic by Fischer-Ladner (1979)

and has become popular recently.

Here we consider regular PDL.

2

Propositional Dynamic Logic

Syntax

Prog set of programs

Prog0 ⊆ Prog: set of atomic programs

Π: set of propositional variables

The set of formulae FmaPDL
Prog,Π of (regular) propositional dynamic logic and

the set of programs Prog are defined by simultaneous induction as follows:

3

PDL: Syntax

Formulae:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| p p ∈ Π (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| [α]F if α ∈ Prog

| 〈α〉 F if α ∈ Prog

Programs:

α, β, γ ::= α0 α0 ∈ Prog0 (atomic program)

| F? F formula (test)

| α; β (sequential composition)

| α ∪ β (non-deterministic choice)

| α∗ (non-deterministic repetition)

4

Semantics

A PDL structure K = (S ,R(), I) is a multimodal Kripke structure with an

accessibility relation for each atomic program. That is it consists of:

• a non-empty set S of states

• an interpretation R() : Prog0 → S × S of atomic programs that

assigns a transition relation R(α) to each atomic program α

• an interpretation I : Π× S → {0, 1}

5

PDL: Semantics

The interpretation of PDL relative to a PDL structure K = (S ,R(), I) is

defined by extending R() to Prog and extending I to FmaPDL
Prog0,Π

by the

following simultaneously inductive definition:

6

Interpretation of formulae/programs

valK(p, s) = I (p, s) if p ∈ Π

valK(¬F , s) = ¬BoolvalK(F , s)

valK(F ∧ G , s) = valK(F , s) ∧Bool valK(G , s)

valK(F ∨ G , s) = valK(F , s) ∨Bool valK(G , s)

valK(F → G , s) = valK(F , s) →Bool valK(G , s)

valK(F ↔ G , s) = valK(F , s) ↔Bool valK(G , s)

valK([α]F , s) = 1 iff for all t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

valK(〈α〉 F , s) = 1 iff for some t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

R([F?]) = {(s, s) | valK(F , s) = 1}

(F? means: if F then skip else do not terminate)

R(α ∪ β) = R(α) ∪ R(β)

R(α; β) = {(s, t) | there exists u ∈ S s.t.(s, u) ∈ R(α) and (u, t) ∈ R(β)}

R(α∗) = R(α)∗

= {(s, t) | there exist n ≥ 0 and u0, . . . , un ∈ S with

s = u0, t = un , (u0, u1), . . . , (un−1, un) ∈ R(α)}

7

Interpretation of formulae/programs

• (K, s) satisfies F (notation (K, s) |= F) iff valK(F , s) = 1.

• F is valid in K (notation K |= F) iff (K, s) |= F for all s ∈ S .

• F is valid (notation |= F) iff K |= F for all PDL-structures K.

8

Hilbert-style axiom system for PDL
Axioms

(D1) All propositional logic tautologies

(D2) [α](A → B) → ([α]A → [α]B)

(D3) [α](A ∧ B) ↔ [α]A ∧ [α]B

(D4) [α; β]A ↔ [α][β]A

(D5) [α ∪ β]A ↔ [α]A ∧ [β]A

(D6) [A?]B ↔ (A → B)

(D7) [α∗]A ↔ A ∧ [α][α∗]A,

(D8) [α∗](A → [α]A) → (A → [α∗]A)

Inference rules

MP
F F → G

G

Gen
F

[α]F

We will show that PDL is determined by PDL structures, and has the finite model

property.

9

Soundness of PDL

Theorem. If the formula F is provable in the inference system for PDL then

F is valid in all PDL structures.

Proof: Induction of the length of the proof, using the following facts:

1. The axioms are valid in every PDL structure. Easy computation.

2. If the premises of an inference rule are valid in a structure K, the

conclusion is also valid in K.

(MP) If K |= F ,K |= F → G then K |= G (follows from the fact that for

every state s of K if (K, s) |= F , (K, s) |= F → G then (K, s) |= G)

(Gen) Assume that K |= F . Then (K, s) |= F for every state s of K.

Let t be a state of K. (K, t) |= [α]F if for all t′ with (t, t′) ∈ R(α) we

have (K, t′) |= F . But under the assumption that K |= F the latter is

always the case. This shows that (K, t) |= [α]F for all t.

10

Completeness of PDL

Theorem. If the formula F is is valid in all PDL structures then F is

provable in the inference system for PDL.

Proof

Idea:

Assume that F is not provable in the inference system for PDL.

We show that:

(1) ¬F is consistent with the set L of all theorems of PDL

(2) We can construct a “canonical” PDL structure KL and a state w

in this PDL structure such that (KL,w) |= ¬F .

Contradiction!

(Details of the proof in the lecture Non-Classical Logics“; written proof

included on the website of the lecture)

11

Decidability of PDL

Theorem. Assume that the formula F in PDL is not valid, i.e. there exists a

Kripke model K and a state s of K with (K , s) |= ¬F . Then ¬F has a finite

model, of size bounded by 2n, where n is the number of subformulae of F .

Idea of the proof:

Fix a model K = (S ,R, I) and a set Γ ⊆ FmaΣ that is closed under

subformulae, i.e. B ∈ Γ implies Subformulae(B) ⊆ Γ.

For each s ∈ S , define

Γs = {B ∈ Γ | (K, s) |= B}

and put s ∼Γ t iff Γs = Γt ,

Then s ∼Γ t iff for all B ∈ Γ, (K, s) |= B iff (K, t) |= B.

Fact: ∼Γ is an equivalence relation on S .

12

Decidability

Let [s] = {t | s ∼Γ t} be the ∼Γ-equivalence class of s.

Let SΓ := {[s] | s ∈ S} be the set of all such equivalence classes.

Goal: (K, s) |= A 7→ (K′, s′) |= A, K′ = (S′,R′, I ′), S′ finite.

Step 1: S′ := SΓ, where Γ = Subformulae(A)

Step 2: I ′ : (Π ∩ Γ) × S′ → {0, 1} def. by I ′(P, [s]) = I (P, s)

Step 3: R′(α) def. e.g. by: ([s], [t]) ∈ R′(α) iff

E

s′ ∈ [s],

E

t′ ∈ [t]: (s′, t′) ∈ R(α)

Theorem: K′ is a PDL structure (a filtration of K).

Since (K, s) |= ¬F it can easily be seen that (K′, [s]) |= ¬F .

Lemma. If Γ is finite, then SΓ is finite and has at most 2n elements, where n is the

number of elements of Γ. 7→ decidability

13

Conclusions

PDL is decidable (it has the finite model propety).

Proof calculi for PDL exist (e.g. sequent calculi, tableau calculi)

For really reasoning about programs, often first order dynamic logic is

needed (undecidable)

Nevertheless, many systems used for verification use sequent or tableau

calculi also for first order dynamic logic.

14

Sequent calculi

In what follows we illustrate a way of designing sequent calculi for

propositional dynamic logic.

We do not give here any completeness results; for a sound and complete

sequent calculus we refer e.g. to:

• Vaughan R. Pratt: A Practical Decision Method for Propositional

Dynamic Logic: Preliminary Report STOC 1978: 326-337

http://dl.acm.org/citation.cfm?doid=800133.804362

For a sound and complete tableau calculus we refer e.g. to:

• Rajeev Goré, Florian Widmann: An Optimal On-the-Fly Tableau-Based

Decision Procedure for PDL-Satisfiability. CADE 2009: 437-452

15

A sequent calculus for PDL

Reminder (Classical propositional logic)

Sequent Calculus based on notion of sequent

ψ1, . . . ,ψm
︸ ︷︷ ︸

Antecedent

⇒ φ1, . . . ,φn
︸ ︷︷ ︸

Succedent

Has same semantics as

|= ψ1 ∧ · · · ∧ ψm → (φ1 ∨ · · · ∨ φn)

{ψ1, . . . ,ψm} |= φ1 ∨ · · · ∨ φn

16

Notation for Sequents

ψ1, . . . ,ψm
︸ ︷︷ ︸

Antecedent

⇒ φ1, . . . ,φn
︸ ︷︷ ︸

Succedent

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables:

φ,ψ, . . . match formulas, Γ,∆, ... match sets of formulas

Characterize infinitely many sequents with a single schematic sequent:

Example: Γ ⇒ ∆,φ ∧ ψ

Matches any sequent with occurrence of conjunction in succedent

We call φ ∧ ψ main formula and Γ,∆ side formulae of sequent.

17

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects semantics

of connectives as closely as possible

Rule Name

premises
︷ ︸︸ ︷

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
︸ ︷︷ ︸

conclusion

.

Example:

andRight
Γ ⇒ φ, ∆ Γ ⇒ ψ,∆

Γ ⇒ φ ∧ ψ, ∆
.

Informal meaning:

In order to prove that Γ entails (φ ∧ ψ) ∨∆ we need to prove that:

Γ entails φ ∨∆ and

Γ entails ψ ∨∆

18

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects semantics

of connectives as closely as possible

Rule Name

premises
︷ ︸︸ ︷

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
︸ ︷︷ ︸

conclusion

.

Example:

andRight
Γ ⇒ φ, ∆ Γ ⇒ ψ,∆

Γ ⇒ φ ∧ ψ, ∆
.

Sound rule (essential): If |= (Γ1 → ∆1) and . . . and |= (Γn → ∆n) then

|= (Γ → ∆)

Complete rule (desirable): If |= (Γ→∆) then |= (Γ1→∆1), . . . |= (Γn→∆n)

19

Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not Γ⇒φ,∆
Γ,¬φ⇒∆

Γ,φ⇒∆
Γ⇒¬φ,∆

and Γ,φ,ψ⇒∆
Γ,φ∧ψ⇒∆

Γ⇒φ,∆ Γ⇒ψ,∆
Γ⇒φ∧ψ,∆

or Γ,φ⇒∆ Γ,ψ⇒∆
Γ,φ∨ψ⇒∆

Γ⇒φ,ψ,∆
Γ⇒φ∨ψ,∆

imp Γ⇒φ,∆ Γ,ψ⇒∆
Γ,φ→ψ⇒∆

Γ,φ⇒ψ,∆
Γ⇒φ→ψ,∆

close
Γ,φ⇒φ,∆

true
Γ⇒true,∆

false
Γ,false⇒∆

20

Example: Part of a sequent calculus for PDL

In addition to the classical propositional rules we can consider:

main left side (antecedent) right side (succedent)

[α]
Γ,[α]φ,[α]ψ⇒∆
Γ,[α](φ∧ψ)⇒∆

Γ⇒∆,[α]φ Γ⇒∆,[α]ψ
Γ⇒∆,[α](φ∧ψ)

<α>
Γ,<α>φ⇒∆ Γ,<α>ψ⇒∆

Γ,<α>(φ∨ψ)⇒∆
Γ⇒∆,<α>φ,<α>ψ
Γ⇒∆,<α>(φ∨ψ)

[α∗]
Γ,[α][α∗]φ,φ⇒∆

Γ,[α∗]φ⇒∆
Γ⇒φ,∆ Γ⇒[α][α∗]φ,∆

Γ⇒∆,[α∗]φ

[φ?] Γ⇒φ,∆ Γ,ψ⇒∆
Γ,[φ?]ψ⇒∆

Γ,φ⇒ψ,∆
Γ⇒[φ?]ψ,∆

< φ? > Γ,φ,ψ⇒∆
Γ,<φ?>ψ⇒∆

Γ,⇒φ,∆ Γ,⇒ψ,∆
Γ⇒<φ?>ψ,∆

α ∪ β
Γ,[α]φ,[β]φ⇒∆
Γ,[α∪β]φ⇒∆

Γ⇒[α]φ,∆ Γ⇒[β]φ,∆
Γ⇒[α∪β]φ,∆

α;β
Γ,[α][β]φ⇒∆
Γ,[α;β]φ⇒∆

Γ⇒[α][β]φ,∆
Γ⇒[α;β]φ,∆

21

Example: Part of a sequent calculus for PDL

We also use:

Γ ⇒ [α](φ → ψ),∆

Γ ⇒ ([α]φ→ [α]ψ),∆

Γ, [α]¬φ⇒ ∆

Γ ⇒ <α>φ, ∆

Γ,φ ⇒ ∆,ψ

Γ,<α>φ ⇒ ∆,<α>ψ

22

Example

Prove <α∗>φ → φ ∨<α><α∗>φ using the sequent calculus.

23

Example

Prove <α∗>φ → φ ∨<α><α∗>φ using the sequent calculus.

close close

[α][α∗]¬φ,¬φ ⇒ ¬φ [α][α∗]¬φ,¬φ ⇒ [α][α∗]¬φ ([α∗], right)

[α][α∗]¬φ,¬φ ⇒ [α∗]¬φ (not)

[α][α∗]¬φ ⇒ [α∗]¬φ,φ (not + <α>)

<α∗>φ ⇒ φ,<α><α∗>φ or, right

<α∗>φ ⇒ φ ∨ <α><α∗>φ (imp, right)

⇒ <α∗>φ → φ ∨ <α><α∗>φ

24

Summary

Dynamic logic

• Syntax and semantics

• Axiom system

• Soundness and completeness

• Sequent calculus

25

