Formal Specification and Verification

Propositional Dynamic Logic (2)

7.02.2017

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Propositional Dynamic Logic

Propositional dynamic logic (PDL) is a multi-modal logic with structured modalities.

For each program α , there is:

- a box-modality $[\alpha]$ and
- a diamond modality $\langle \alpha \rangle$.

PDL was developed from first-order dynamic logic by Fischer-Ladner (1979) and has become popular recently.

Here we consider regular PDL.

Propositional Dynamic Logic

Syntax

Prog set of programs

 $Prog_0 \subseteq Prog$: set of atomic programs

 Π : set of propositional variables

The set of formulae $\mathbf{Fma_{Prog,\Pi}^{PDL}}$ of (regular) propositional dynamic logic and the set of programs \mathbf{Prog} are defined by simultaneous induction as follows:

PDL: Syntax

Formulae:

Programs:

$$\alpha, \beta, \gamma$$
 ::= α_0 $\alpha_0 \in \operatorname{Prog}_0$ (atomic program)

| F ?
| F formula (test)
| $\alpha; \beta$ (sequential composition)
| $\alpha \cup \beta$ (non-deterministic choice)
| α^* (non-deterministic repetition)

Semantics

A PDL structure $\mathcal{K} = (S, R(), I)$ is a multimodal Kripke structure with an accessibility relation for each atomic program. That is it consists of:

- a non-empty set *S* of states
- an interpretation R(): $\operatorname{Prog}_0 \to S \times S$ of atomic programs that assigns a transition relation $R(\alpha)$ to each atomic program α
- an interpretation $I: \Pi \times S \rightarrow \{0, 1\}$

PDL: Semantics

The interpretation of PDL relative to a PDL structure $\mathcal{K} = (S, R(), I)$ is defined by extending R() to Prog and extending I to $\mathsf{Fma}_{\mathsf{Prog}_0,\Pi}^{PDL}$ by the following simultaneously inductive definition:

Interpretation of formulae/programs

$$val_{\mathcal{K}}(p,s) = l(p,s) \quad \text{if } p \in \Pi$$

$$val_{\mathcal{K}}(\neg F,s) = \neg_{\mathsf{Bool}} val_{\mathcal{K}}(F,s)$$

$$val_{\mathcal{K}}(F \land G,s) = val_{\mathcal{K}}(F,s) \land_{\mathsf{Bool}} val_{\mathcal{K}}(G,s)$$

$$val_{\mathcal{K}}(F \lor G,s) = val_{\mathcal{K}}(F,s) \lor_{\mathsf{Bool}} val_{\mathcal{K}}(G,s)$$

$$val_{\mathcal{K}}(F \to G,s) = val_{\mathcal{K}}(F,s) \to_{\mathsf{Bool}} val_{\mathcal{K}}(G,s)$$

$$val_{\mathcal{K}}(F \leftrightarrow G,s) = val_{\mathcal{K}}(F,s) \leftrightarrow_{\mathsf{Bool}} val_{\mathcal{K}}(G,s)$$

$$val_{\mathcal{K}}([\alpha]F,s) = 1 \quad \text{iff} \quad \text{for all } t \in S \text{ with } (s,t) \in R(\alpha), val_{\mathcal{K}}(F,t) = 1$$

$$val_{\mathcal{K}}(\langle \alpha \rangle F,s) = 1 \quad \text{iff} \quad \text{for some } t \in S \text{ with } (s,t) \in R(\alpha), val_{\mathcal{K}}(F,t) = 1$$

$$R([F?]) = \{(s,s) \mid val_{\mathcal{K}}(F,s) = 1\}$$

$$(F? \text{ means: if } F \text{ then skip else do not terminate})$$

$$R(\alpha \cup \beta) = R(\alpha) \cup R(\beta)$$

$$R(\alpha;\beta) = \{(s,t) \mid \text{ there exists } u \in S \text{ s.t.}(s,u) \in R(\alpha) \text{ and } (u,t) \in R(\beta)\}$$

$$R(\alpha^*) = R(\alpha)^*$$

$$= \{(s,t) \mid \text{ there exist } n \geq 0 \text{ and } u_0, \dots, u_n \in S \text{ with } s = u_0, t = u_n, (u_0,u_1), \dots, (u_{n-1},u_n) \in R(\alpha)\}$$

Interpretation of formulae/programs

- (K, s) satisfies F (notation $(K, s) \models F$) iff $val_K(F, s) = 1$.
- F is valid in K (notation $K \models F$) iff $(K, s) \models F$ for all $s \in S$.
- F is valid (notation $\models F$) iff $\mathcal{K} \models F$ for all PDL-structures \mathcal{K} .

Hilbert-style axiom system for PDL

Axioms

(D2)
$$[\alpha](A \to B) \to ([\alpha]A \to [\alpha]B)$$

(D3)
$$[\alpha](A \wedge B) \leftrightarrow [\alpha]A \wedge [\alpha]B$$

(D4)
$$[\alpha; \beta] A \leftrightarrow [\alpha] [\beta] A$$

(D5)
$$[\alpha \cup \beta]A \leftrightarrow [\alpha]A \wedge [\beta]A$$

(D6)
$$[A?]B \leftrightarrow (A \rightarrow B)$$

(D7)
$$[\alpha^*]A \leftrightarrow A \wedge [\alpha][\alpha^*]A,$$

(D8)
$$[\alpha^*](A \to [\alpha]A) \to (A \to [\alpha^*]A)$$

Inference rules

$$MP$$
 $\dfrac{F \qquad F o G}{G}$ Gen $\dfrac{F}{[lpha]F}$

We will show that PDL is determined by PDL structures, and has the finite model property.

Soundness of PDL

Theorem. If the formula *F* is provable in the inference system for PDL then *F* is valid in all PDL structures.

Proof: Induction of the length of the proof, using the following facts:

- 1. The axioms are valid in every PDL structure. Easy computation.
- 2. If the premises of an inference rule are valid in a structure K, the conclusion is also valid in K.
- (MP) If $\mathcal{K} \models F, \mathcal{K} \models F \rightarrow G$ then $\mathcal{K} \models G$ (follows from the fact that for every state s of \mathcal{K} if $(\mathcal{K}, s) \models F, (\mathcal{K}, s) \models F \rightarrow G$ then $(\mathcal{K}, s) \models G$)
- (Gen) Assume that $\mathcal{K} \models F$. Then $(\mathcal{K}, s) \models F$ for every state s of \mathcal{K} . Let t be a state of \mathcal{K} . $(\mathcal{K}, t) \models [\alpha]F$ if for all t' with $(t, t') \in R(\alpha)$ we have $(\mathcal{K}, t') \models F$. But under the assumption that $\mathcal{K} \models F$ the latter is always the case. This shows that $(\mathcal{K}, t) \models [\alpha]F$ for all t.

Completeness of PDL

Theorem. If the formula F is is valid in all PDL structures then F is provable in the inference system for PDL.

Proof

Idea:

Assume that F is not provable in the inference system for PDL.

We show that:

- (1) $\neg F$ is consistent with the set L of all theorems of PDL
- (2) We can construct a "canonical" PDL structure \mathcal{K}_L and a state w in this PDL structure such that $(\mathcal{K}_L, w) \models \neg F$.

Contradiction!

(Details of the proof in the lecture Non-Classical Logics"; written proof included on the website of the lecture)

Decidability of PDL

Theorem. Assume that the formula F in PDL is not valid, i.e. there exists a Kripke model \mathcal{K} and a state s of \mathcal{K} with $(K, s) \models \neg F$. Then $\neg F$ has a finite model, of size bounded by 2^n , where n is the number of subformulae of F.

Idea of the proof:

Fix a model $\mathcal{K} = (S, R, I)$ and a set $\Gamma \subseteq Fma_{\Sigma}$ that is closed under subformulae, i.e. $B \in \Gamma$ implies Subformulae $(B) \subseteq \Gamma$.

For each $s \in S$, define

$$\Gamma_s = \{B \in \Gamma \mid (\mathcal{K}, s) \models B\}$$

and put $s \sim_{\Gamma} t$ iff $\Gamma_s = \Gamma_t$,

Then $s \sim_{\Gamma} t$ iff for all $B \in \Gamma$, $(\mathcal{K}, s) \models B$ iff $(\mathcal{K}, t) \models B$.

Fact: \sim_{Γ} is an equivalence relation on S.

Decidability

Let $[s] = \{t \mid s \sim_{\Gamma} t\}$ be the \sim_{Γ} -equivalence class of s.

Let $S_{\Gamma} := \{[s] \mid s \in S\}$ be the set of all such equivalence classes.

Goal:
$$(K, s) \models A \mapsto (K', s') \models A, K' = (S', R', I'), S'$$
 finite.

Step 1: $S' := S_{\Gamma}$, where $\Gamma = \text{Subformulae}(A)$

Step 2:
$$I': (\Pi \cap \Gamma) \times S' \to \{0,1\}$$
 def. by $I'(P,[s]) = I(P,s)$

Step 3:
$$R'(\alpha)$$
 def. e.g. by: $([s], [t]) \in R'(\alpha)$ iff $\exists s' \in [s], \exists t' \in [t]$: $(s', t') \in R(\alpha)$

Theorem: \mathcal{K}' is a PDL structure (a filtration of \mathcal{K}). Since $(\mathcal{K}, s) \models \neg F$ it can easily be seen that $(\mathcal{K}', [s]) \models \neg F$.

Lemma. If Γ is finite, then S_{Γ} is finite and has at most 2^n elements, where n is the number of elements of Γ . \mapsto decidability

Conclusions

PDL is decidable (it has the finite model propety).

Proof calculi for PDL exist (e.g. sequent calculi, tableau calculi)

For really reasoning about programs, often *first order dynamic logic* is needed (undecidable)

Nevertheless, many systems used for verification use sequent or tableau calculi also for first order dynamic logic.

Sequent calculi

In what follows we illustrate a way of designing sequent calculi for propositional dynamic logic.

We do not give here any completeness results; for a sound and complete sequent calculus we refer e.g. to:

 Vaughan R. Pratt: A Practical Decision Method for Propositional Dynamic Logic: Preliminary Report STOC 1978: 326-337
 http://dl.acm.org/citation.cfm?doid=800133.804362

For a sound and complete tableau calculus we refer e.g. to:

 Rajeev Goré, Florian Widmann: An Optimal On-the-Fly Tableau-Based Decision Procedure for PDL-Satisfiability. CADE 2009: 437-452

A sequent calculus for PDL

Reminder (Classical propositional logic)

Sequent Calculus based on notion of sequent

$$\underbrace{\psi_1, \dots, \psi_m} \Rightarrow \underbrace{\phi_1, \dots, \phi_n}$$
Antecedent Succedent

Has same semantics as

$$\models \psi_1 \wedge \cdots \wedge \psi_m \to (\phi_1 \vee \cdots \vee \phi_n)$$

$$\{\psi_1,\ldots,\psi_m\}\models\phi_1\vee\cdots\vee\phi_n$$

Notation for Sequents

$$\underbrace{\psi_1, \dots, \psi_m}_{\text{Antecedent}} \Rightarrow \underbrace{\phi_1, \dots, \phi_n}_{\text{Succedent}}$$

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables:

 ϕ, ψ, \ldots match formulas, Γ, Δ, \ldots match sets of formulas

Characterize infinitely many sequents with a single schematic sequent:

Example: $\Gamma \Rightarrow \Delta$, $\phi \land \psi$

Matches any sequent with occurrence of conjunction in succedent We call $\phi \wedge \psi$ main formula and Γ , Δ side formulae of sequent.

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

Rule Name
$$\frac{\Gamma_1\Rightarrow\Delta_1\dots\,\Gamma_n\Rightarrow\Delta_n}{\Gamma\Rightarrow\Delta}\;.$$
 conclusion

Example:

and Right
$$\frac{\Gamma \Rightarrow \phi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$$
.

Informal meaning:

In order to prove that Γ entails $(\phi \wedge \psi) \vee \Delta$ we need to prove that:

 Γ entails $\phi \vee \Delta$ and

 Γ entails $\psi \vee \Delta$

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

Rule Name
$$\frac{\Gamma_1\Rightarrow\Delta_1\dots\,\Gamma_n\Rightarrow\Delta_n}{\Gamma\Rightarrow\Delta}\;.$$
 conclusion

Example:

and Right
$$\frac{\Gamma \Rightarrow \phi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$$
.

Sound rule (essential): If $\models (\Gamma_1 \to \Delta_1)$ and ... and $\models (\Gamma_n \to \Delta_n)$ then $\models (\Gamma \to \Delta)$

Complete rule (desirable): If $\models (\Gamma \rightarrow \Delta)$ then $\models (\Gamma_1 \rightarrow \Delta_1), \ldots \models (\Gamma_n \rightarrow \Delta_n)$

Rules of Propositional Sequent Calculus

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma{\Rightarrow}\phi,\Delta}{\Gamma,\neg\phi{\Rightarrow}\Delta}$	$\frac{\Gamma,\phi\!\Rightarrow\!\Delta}{\Gamma\!\Rightarrow\!\neg\phi,\Delta}$
and	$\frac{\Gamma,\phi,\psi{\Rightarrow}\Delta}{\Gamma,\phi{\wedge}\psi{\Rightarrow}\Delta}$	$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$
or	$\frac{\Gamma, \phi \Rightarrow \Delta \qquad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \phi \lor \psi \Rightarrow \Delta}$	$\frac{\Gamma{\Rightarrow}\phi{,}\psi{,}\Delta}{\Gamma{\Rightarrow}\phi{\lor}\psi{,}\Delta}$
imp	$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \phi \rightarrow \psi \Rightarrow \Delta}$	$\frac{\Gamma,\phi \Rightarrow \psi,\Delta}{\Gamma \Rightarrow \phi \rightarrow \psi,\Delta}$

close
$$\frac{}{\Gamma,\phi\Rightarrow\phi,\Delta}$$
 true $\frac{}{\Gamma\Rightarrow \mathsf{true},\Delta}$ false $\frac{}{\Gamma,\mathsf{false}\Rightarrow\Delta}$

Example: Part of a sequent calculus for PDL

In addition to the classical propositional rules we can consider:

main	left side (antecedent)	right side (succedent)
α	$\frac{\Gamma, [\alpha]\phi, [\alpha]\psi \Rightarrow \Delta}{\Gamma, [\alpha](\phi \land \psi) \Rightarrow \Delta}$	$\frac{\Gamma \Rightarrow \Delta, [\alpha] \phi \Gamma \Rightarrow \Delta, [\alpha] \psi}{\Gamma \Rightarrow \Delta, [\alpha] (\phi \land \psi)}$
$< \alpha >$	$\frac{\Gamma, <\alpha > \phi \Rightarrow \Delta \qquad \Gamma, <\alpha > \psi \Rightarrow \Delta}{\Gamma, <\alpha > (\phi \lor \psi) \Rightarrow \Delta}$	$\frac{\Gamma \Rightarrow \Delta, <\alpha > \phi, <\alpha > \psi}{\Gamma \Rightarrow \Delta, <\alpha > (\phi \lor \psi)}$
$[\alpha^*]$	$\frac{\Gamma, [\alpha][\alpha^*]\phi, \phi \Rightarrow \Delta}{\Gamma, [\alpha^*]\phi \Rightarrow \Delta}$	$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma \Rightarrow [\alpha][\alpha^*]\phi, \Delta}{\Gamma \Rightarrow \Delta, [\alpha^*]\phi}$
$[\phi?]$	$\frac{\Gamma{\Rightarrow}\phi{,}\Delta\Gamma{,}\psi{\Rightarrow}\Delta}{\Gamma{,}[\phi{?}]\psi{\Rightarrow}\Delta}$	$rac{\Gamma,\phi \Rightarrow \psi,\Delta}{\Gamma \Rightarrow [\phi?]\psi,\Delta}$
$<\phi$? $>$	$\frac{\Gamma, \phi, \psi \Rightarrow \Delta}{\Gamma, <\phi? > \psi \Rightarrow \Delta}$	$\frac{\Gamma, \Rightarrow \phi, \Delta \qquad \Gamma, \Rightarrow \psi, \Delta}{\Gamma \Rightarrow <\phi? > \psi, \Delta}$
$\alpha \cup \beta$	$\frac{\Gamma, [\alpha]\phi, [\beta]\phi \Rightarrow \Delta}{\Gamma, [\alpha \cup \beta]\phi \Rightarrow \Delta}$	$\frac{\Gamma \Rightarrow [\alpha]\phi, \Delta \qquad \Gamma \Rightarrow [\beta]\phi, \Delta}{\Gamma \Rightarrow [\alpha \cup \beta]\phi, \Delta}$
lpha; eta	$\frac{\Gamma, [\alpha][\beta]\phi \Rightarrow \Delta}{\Gamma, [\alpha; \beta]\phi \Rightarrow \Delta}$	$\frac{\Gamma \Rightarrow [\alpha][\beta]\phi, \Delta}{\Gamma \Rightarrow [\alpha; \beta]\phi, \Delta}$

Example: Part of a sequent calculus for PDL

We also use:

$$\frac{\Gamma \Rightarrow [\alpha](\phi \to \psi), \Delta}{\Gamma \Rightarrow ([\alpha]\phi \to [\alpha]\psi), \Delta}$$

$$\frac{\Gamma, [\alpha]\neg \phi \Rightarrow \Delta}{\Gamma \Rightarrow \langle \alpha \rangle \phi, \Delta}$$

$$\frac{\Gamma, \phi \Rightarrow \Delta, \psi}{\Gamma, <\alpha > \phi \Rightarrow \Delta, <\alpha > \psi}$$

Example

Prove $<\alpha^*>\phi \to \phi \lor <\alpha><\alpha^*>\phi$ using the sequent calculus.

Example

Prove $<\alpha^*>\phi \rightarrow \phi \lor <\alpha><\alpha^*>\phi$ using the sequent calculus.

close	close	
$ \overline{[\alpha][\alpha^*] \neg \phi, \neg \phi} \Rightarrow $	$\neg \phi \qquad [\alpha][\alpha^*] \neg \phi, \neg \phi \Rightarrow [\alpha][$	$\overline{[lpha^*] eg\phi}$ ([$lpha^*$], right)
$[\alpha]$	$[\alpha^*] \neg \phi, \neg \phi \Rightarrow [\alpha^*] \neg \phi$	(not)
α	$][\alpha^*] \neg \phi \Rightarrow [\alpha^*] \neg \phi, \phi$	$(not + <\!\alpha\!>)$
<0	$\alpha^* > \phi \Rightarrow \phi, <\alpha > <\alpha^* > \phi$	or, right
$<\alpha$	$^* > \phi \Rightarrow \phi \lor <\alpha > <\alpha^* > \phi$	(imp, right)
⇒ <	$(\alpha^* > \phi \rightarrow \phi \lor < \alpha > < \alpha^* > \phi)$	

Summary

Dynamic logic

- Syntax and semantics
- Axiom system
- Soundness and completeness
- Sequent calculus