
Formal Specification and Verification

1. Classical Logic

27.10.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Mathematical foundations:

Classical first-order logic

2

Mathematical foundations:

Classical first-order logic

George Boole (1815-1864)

George Boole is best known as the author of

“The Laws of Thought” (1854). He is the inventor

of the prototype of what is now called Boolean logic.

Because of this Boole is also regarded as a founder

of the field of computer science.

3

Mathematical foundations:

Classical first-order logic

David Hilbert (1862-1943)

David Hilbert is recognized as one of the most influential and

universal mathematicians of the 19th and early 20th centuries.

A famous example of his leadership in mathematics

is his 1900 presentation of a collection of 23 problems

that set the course for much of the mathematical

research of the 20th century.

Hilbert is known as one of the founders of proof theory

and mathematical logic.

4

Mathematical foundations:

Classical first-order logic

Gottlob Frege (1848-1925)

Gottlob Frege is considered to be one of the founders of

modern logic and made major contributions to the foundations

of mathematics.

Frege invented axiomatic predicate logic, in large part thanks

to the fact that he introduced and used quantified variables.

5

Formal logics

A formal logic consists of:

• Syntax: a formal language (formula expressing facts)

• Semantics: to define the meaning of the language, that is which facts

are valid)

• Deductive system: made of axioms and inference rules to formaly

derive theorems, that is facts that are provable

6

Questions about formal logics

The main questions about a formal logic are:

• The soundness of the deductive system: no provable formula is invalid

• The completeness of the deductive system: all valid formulae are

provable

7

Part 1: Propositional classical logic

Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum

Fitting: First-Order Logic and Automated Theorem Proving, Springer

8

1.1 Syntax

• propositional variables

• logical symbols

⇒ Boolean combinations

9

Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S , to denote propositional variables.

10

Propositional Formulas

FΠ is the set of propositional formulas over Π defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| P, P ∈ Π (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

11

Notational Conventions

• We omit brackets according to the following rules:

– ¬ >p ∧ >p ∨ >p → >p ↔ (binding precedences)

– ∨ and ∧ are associative and commutative

12

1.2 Semantics

In classical logic (dating back to Aristoteles) there are “only” two

truth values “true” and “false” which we shall denote, respectively,

by 1 and 0.

There are multi-valued logics having more than two truth values.

13

Valuations

A propositional variable has no intrinsic meaning. The meaning of a

propositional variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.

14

Truth Value of a Formula in A

Given a Π-valuation A, the function A∗ : Σ-formulas → {0, 1} is

defined inductively over the structure of F as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F) = 1−A∗(F)

A∗(FρG) = Bρ(A
∗(F),A∗(G))

with Bρ the Boolean function associated with ρ

For simplicity, we write A instead of A∗.

15

Truth Value of a Formula in A

Example: Let’s evaluate the formula

(P → Q) ∧ (P ∧ Q → R) → (P → R)

w.r.t. the valuation A with

A(P) = 1,A(Q) = 0,A(R) = 1

(On the blackboard)

16

1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable iff there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).

17

1.3 Models, Validity, and Satisfiability

Examples:

F → F and F ∨ ¬F are valid for all formulae F .

Obviously, every valid formula is also satisfiable

F ∧ ¬F is unsatisfiable

The formula P is satisfiable, but not valid

18

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G ,

if for all Π-valuations A, whenever A |= F then A |= G .

F and G are called equivalent if for all Π-valuations A we have

A |= F ⇔ A |= G .

Proposition 1.1:

F entails G iff (F → G) is valid

Proposition 1.2:

F and G are equivalent iff (F ↔ G) is valid.

19

Entailment and Equivalence

Extension to sets of formulas N in the “natural way”, e.g., N |= F if

for all Π-valuations A: if A |= G for all G ∈ N, then A |= F .

A set N of formulae is satisfiable iff there exists an A such that

A |= F for all F ∈ N.

Otherwise N is called unsatisfiable (or contradictory).

Thus, N is unsatisfiable iff N |=⊥.

20

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as

explained by the following proposition.

Proposition 1.3:

F valid ⇔ ¬F unsatisfiable

N |= F ⇔ N ∪ {¬F} unsatisfiable

Hence in order to design a theorem prover (validity/entailment

checker) it is sufficient to design a checker for unsatisfiability.

21

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables.

Obviously, A(F) depends only on the values of those finitely many

variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to

check 2n valuations to see whether F is satisfiable or not.

⇒ truth table.

So the satisfiability problem is clearly decidable

(but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth

tables to check the satisfiability of a formula. (later more)

22

Some Important Equivalences

The following equivalences are valid for all formulas F ,G ,H:

(F ∧ F) ↔ F

(F ∨ F) ↔ F (Idempotency)

(F ∧ G) ↔ (G ∧ F)

(F ∨ G) ↔ (G ∨ F) (Commutativity)

(F ∧ (G ∧ H)) ↔ ((F ∧ G) ∧ H)

(F ∨ (G ∨ H)) ↔ ((F ∨ G) ∨ H) (Associativity)

(F ∧ (G ∨ H)) ↔ ((F ∧ G) ∨ (F ∧ H))

(F ∨ (G ∧ H)) ↔ ((F ∨ G) ∧ (F ∨ H)) (Distributivity)

23

Some Important Equivalences

The following equivalences are valid for all formulas F ,G ,H:

(F ∧ (F ∨ G)) ↔ F

(F ∨ (F ∧ G)) ↔ F (Absorption)

(¬¬F) ↔ F (Double Negation)

¬(F ∧ G) ↔ (¬F ∨ ¬G)

¬(F ∨ G) ↔ (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧ G) ↔ F , if G is a tautology

(F ∨ G) ↔ ⊤, if G is a tautology (Tautology Laws)

(F ∧ G) ↔ ⊥, if G is unsatisfiable

(F ∨ G) ↔ F , if G is unsatisfiable (Tautology Laws)

24

1.4 Normal Forms

We define conjunctions of formulas as follows:

∧0
i=1 Fi = ⊤.

∧1
i=1 Fi = F1.

∧n+1
i=1 Fi =

∧n

i=1 Fi ∧ Fn+1.

and analogously disjunctions:

∨0
i=1 Fi = ⊥.

∨1
i=1 Fi = F1.

∨n+1
i=1 Fi =

∨n

i=1 Fi ∨ Fn+1.

25

Literals and Clauses

A literal is either a propositional variable P or a negated propositional

variable ¬P.

A clause is a (possibly empty) disjunction of literals.

26

Literals and Clauses

A literal is either a propositional variable P or a negated propositional

variable ¬P.

A clause is a (possibly empty) disjunction of literals.

Example of clauses:

⊥ the empty clause

P positive unit clause

¬P negative unit clause

P ∨ Q ∨ R positive clause

P ∨ ¬Q ∨ ¬R clause

P ∨ P ∨ ¬Q ∨ ¬R ∨ R allow repetitions/complementary literals

27

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form),

if it is a conjunction of disjunctions of literals (or in other words, a

conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction

of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?

are duplicated literals permitted?

are empty disjunctions/conjunctions permitted?

28

Conversion to CNF/DNF

Proposition 1.4:

For every formula there is an equivalent formula in CNF (and also an

equivalent formula in DNF).

Proof:

We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity

and commutativity of ∧ and ∨):

Step 1: Eliminate equivalences:

(F ↔ G) ⇒K (F → G) ∧ (G → F)

29

Conversion to CNF/DNF

Step 2: Eliminate implications:

(F → G) ⇒K (¬F ∨ G)

Step 3: Push negations downward:

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

Step 4: Eliminate multiple negations:

¬¬F ⇒K F

The formula obtained from a formula F after applying steps 1-4 is called

the negation normal form (NNF) of F

30

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

Step 6: Eliminate ⊤ and ⊥:

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

¬⊥ ⇒K ⊤

¬⊤ ⇒K ⊥

31

Conversion to CNF/DNF

Proving termination is easy for most of the steps; only step 3 and

step 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except

that disjunctions have to be pushed downward in step 5.

32

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is

exponential in the size of the original one.

33

Satisfiability-preserving Transformations

The goal

“find a formula G in CNF such that |= F ↔ G”

is unpractical.

But if we relax the requirement to

“find a formula G in CNF such that F |= ⊥ iff G |= ⊥”

we can get an efficient transformation.

34

Satisfiability-preserving Transformations

Idea:

A formula F [F ′] is satisfiable iff F [P] ∧ (P ↔ F ′) is satisfiable

(where P new propositional variable that works as abbreviation for F ′).

We can use this rule recursively for all subformulas in the original formula

(this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an

additional factor (each formula P ↔ F ′ gives rise to at most one application

of the distributivity law).

35

Optimized Transformations

A further improvement is possible by taking the polarity of the

subformula F into account.

Assume that F contains neither → nor ↔. A subformula F ′ of F has

positive polarity in F , if it occurs below an even number of negation

signs; it has negative polarity in F , if it occurs below an odd number

of negation signs.

36

Optimized Transformations

Proposition 1.5:

Let F [F ′] be a formula containing neither → nor ↔; let P be a

propositional variable not occurring in F [F ′].

If F ′ has positive polarity in F , then F [F ′] is satisfiable if and only if

F [P] ∧ (P → F ′) is satisfiable.

If F ′ has negative polarity in F , then F [F ′] is satisfiable if and only if

F [P] ∧ (F ′ → P) is satisfiable.

Proof:

Exercise.

This satisfiability-preserving transformation to clause form is also called

structure-preserving transformation to clause form.

37

Optimized Transformations

Example: Let F = (Q1 ∧ Q2) ∨ (R1 ∧ R2).

The following are equivalent:

• F |=⊥

• PF ∧ (PF ↔ (PQ1∧Q2 ∨ PR1∧R2) ∧ (PQ1∧Q2 ↔ (Q1 ∧Q2))

∧ (PR1∧R2 ↔ (R1 ∧ R2)) |=⊥

• PF ∧ (PF → (PQ1∧Q2 ∨ PR1∧R2) ∧ (PQ1∧Q2 → (Q1 ∧Q2))

∧ (PR1∧R2 → (R1 ∧ R2)) |=⊥

• PF ∧ (¬PF ∨ PQ1∧Q2 ∨ PR1∧R2) ∧ (¬PQ1∧Q2 ∨ Q1) ∧ (¬PQ1∧Q2 ∨Q2)

∧ (¬PR1∧R2 ∨ R1) ∧ (¬PR1∧R2 ∨ R2)) |=

38

Proof methods

• Simple Decision Procedures

truth table method

• Deductive methods

• Forward reasoning

Assumptions and axioms are logically combined by inference

rules to reason towards the goal

• Backward reasoning

Inference rules are directly applied to the goal, possibly generating

new subgoals.

39

Proof methods

• Simple Decision Procedures

truth table method

• Deductive methods

• Inference Systems and Proofs (generalities)

• Example: Hilbert Deductive System

• The Resolution Procedure

• Sequent calculi

• The DPLL procedure

40

1.5 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . ,Fn,Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises
︷ ︸︸ ︷

F1 . . . Fn

Fn+1
︸︷︷︸

conclusion

.

Clausal inference system: premises and conclusions are clauses. One

also considers inference systems over other data structures.

41

Proofs

A proof in Γ of a formula F from a a set of formulas N (called

assumptions) is a sequence F1, . . . ,Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N, or else there exists an inference

(Fi1 , . . . , Fini
, Fi) in Γ, such that 0 ≤ ij < i , for 1 ≤ j ≤ ni .

42

Soundness and Completeness

Provability ⊢Γ of F from N in Γ:

N ⊢Γ F :⇔ there exists a proof Γ of F from N.

Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . ,Fn |= F

Γ is called complete :⇔

N |= F ⇒ N ⊢Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N ⊢Γ ⊥

43

