Formal Specification and Verification

8.11.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Mathematical foundations

Formal logic:

- Syntax: a formal language (formula expressing facts)
- Semantics: to define the meaning of the language, that is which facts are valid)
- Deductive system: made of axioms and inference rules to formaly derive theorems, that is facts that are provable

Last time

Propositional classical logic

- Syntax
- Semantics

Models, Validity, and Satisfiability Entailment and Equivalence

• Checking Unsatisfiability

Truth tables

"Rewriting" using equivalences

Proof systems: clausal/non-clausal

Today

Propositional classical logic

Proof systems: clausal/non-clausal

- non-clausal: Hilbert calculus

sequent calculus

- clausal: Resolution; DPLL (translation to CNF needed)
- Binary Decision Diagrams

Today

Propositional classical logic

Proof systems: clausal/non-clausal

- non-clausal: Hilbert calculus

sequent calculus

- clausal: Resolution; DPLL (translation to CNF needed)
- Binary Decision Diagrams

A deductive system for Propositional logic

Variant of the system of Hilbert-Ackermann

(Signature: \vee , \neg ; $x \rightarrow y \equiv_{\mathsf{Def}} \neg x \vee y$)

Axiom Schemata (to be instantiated for all possible formulae)

$$(1) \ (p \lor p) \to p$$

(2)
$$p \rightarrow (q \lor p)$$

$$(3) (p \lor q) \to (q \lor p)$$

$$(4) (p \rightarrow q) \rightarrow (r \lor p \rightarrow r \lor q)$$

Inference rules

Modus Ponens: $\frac{p, \quad p \rightarrow q}{q}$

Example of proof

Prove $\phi \vee \neg \phi$

1.
$$((\phi \lor \phi) \to \phi) \to (\neg \phi \lor (\phi \lor \phi) \to \neg \phi \lor \phi)$$

[Instance of (4)]

2.
$$\phi \lor \phi \rightarrow \phi$$

3.
$$\neg \phi \lor (\phi \lor \phi) \rightarrow (\neg \phi \lor \phi)$$

3'. =
$$(\phi \rightarrow (\phi \lor \phi)) \rightarrow (\neg \phi \lor \phi)$$

4.
$$\phi \rightarrow \phi \lor \phi$$

5.
$$\neg \phi \lor \phi$$

6.
$$(\neg \phi \lor \phi) \to (\phi \lor \neg \phi)$$

7.
$$\phi \vee \neg \phi$$

[Instance of (1)]

[1., 2., and MP]

[3 and definition of \rightarrow]

[Instance of (2)]

[3., 4. and MP]

[Instance of (3)]

[5., 6. and MP]

Soundness

 Γ is called sound : \Leftrightarrow

$$\frac{F_1 \ldots F_n}{F} \in \Gamma \quad \Rightarrow \quad F_1, \ldots, F_n \models F$$

 Γ sound iff If $N \vdash_{\Gamma} F$ then $N \models F$.

Theorem. The Hilbert deductive system is sound.

Proof: The proof for propositional logic is by induction on the length of the formal proof of F from N.

Proof of length 0: show that all axioms are valid

Induction step $n \mapsto n + 1$: uses the definition of a proof.

It is sufficient to show that $(\phi \land (\phi \rightarrow \phi')) \models \phi'$.

Completeness

 Γ is called complete : \Leftrightarrow

$$N \models F \Rightarrow N \vdash_{\Gamma} F$$

Theorem. The Hilbert deductive system is complete.

Completeness: Proof Idea

Entailment vs. Validity: $N, F \models G$ iff $N \models F \rightarrow G$.

Deduction Theorem: $N, F \vdash G \text{ iff } N \vdash F \rightarrow G.$

Definition: A set N of formulae is inconsistent if there is a formula F such that $N \models F$ and $N \models \neg F$.

$$N \models F$$
 iff $N \cup \{\neg F\}$ unsatisfiable

$$N \vdash F \text{ iff } N \cup \{\neg F\} \text{ inconsistent}$$

Proof idea

To show: $N \models F \Rightarrow N \vdash F$

equivalent to: $N \cup \{\neg F\}$ unsatisfiable $\Rightarrow N \cup \{\neg F\}$ inconsistent.

equivalent to: $N \cup \{\neg F\}$ consistent $\Rightarrow N \cup \{\neg F\}$ satisfiable

Completeness: Proof

We show: For every set N of formulae, if N is consistent then N is satisfiable.

Proof: Let F_1, \ldots, F_n, \ldots an enumeration of all propositional logic formulae over Π .

Given N consistent, define a sequence of sets of formulae N_0 , N_1 , N_2 . . . by:

$$N_0 = N$$

$$N_{n+1} = \begin{cases} N_n \cup \{F_n\} & \text{if } N_n \cup \{F_n\} \text{ consistent} \\ N_n \cup \{\neg F_n\} & \text{if } N_n \cup \{\neg F_n\} \text{ consistent} \end{cases}$$

 $N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq N_n \subseteq \ldots$ and all these sets are consistent.

Let $N^* = \bigcup_{n \in \mathbb{N}} N_i$. N^* is consistent. We define a valuation \mathcal{A} with

$$\mathcal{A}(P) = \begin{cases} 1 & \text{if } P \in N^* \\ 0 & \text{if } \neg P \in N^* \end{cases}$$

Then we can show that:

$$\mathcal{A}(F) = \left\{ egin{array}{ll} 1 & ext{if } F \in \mathcal{N}^* \ 0 & ext{if } \neg F \in \mathcal{N}^* \end{array}
ight.$$

Hence, $A \models N$

Overview

Propositional classical logic

Proof systems: clausal/non-clausal

- non-clausal: Hilbert calculus

sequent calculus

- clausal: Resolution; DPLL (translation to CNF needed)
- Binary Decision Diagrams

Sequent calculus for propositional logic

Sequent Calculus based on notion of sequent

$$\underbrace{\psi_1, \dots, \psi_m} \Rightarrow \underbrace{\phi_1, \dots, \phi_n}$$
Antecedent Succedent

Has same semantics as

$$\models \psi_1 \wedge \cdots \wedge \psi_m \rightarrow (\phi_1 \vee \cdots \vee \phi_n)$$

$$\{\psi_1,\ldots,\psi_m\}\models\phi_1\vee\cdots\vee\phi_n$$

$$\underbrace{\psi_1, \dots, \psi_m}_{\text{Antecedent}} \Rightarrow \underbrace{\phi_1, \dots, \phi_n}_{\text{Succedent}}$$

Consider antecedent/succedent as sets of formulae (may be empty)

$$\underbrace{\psi_1, \dots, \psi_m}_{\text{Antecedent}} \Rightarrow \underbrace{\phi_1, \dots, \phi_n}_{\text{Succedent}}$$

Consider antecedent/succedent as sets of formulae (may be empty)

Conventions:

- ullet empty antecedent = empty conjunction = \top
- ullet empty succedent = empty disjunction = \bot

$$\underbrace{\psi_1, \dots, \psi_m} \Rightarrow \underbrace{\phi_1, \dots, \phi_n}$$
Antecedent Succedent

Consider antecedent/succedent as sets of formulae (may be empty)

Conventions:

- ullet empty antecedent = empty conjunction = \top
- ullet empty succedent = empty disjunction $= \bot$

Alternative notation:

$$\psi_1, \ldots, \psi_m \vdash \phi_1, \ldots, \phi_n$$

Not used here because of the risk of potential confusion with the provability relation

$$\underbrace{\psi_1, \dots, \psi_m}_{\text{Antecedent}} \Rightarrow \underbrace{\phi_1, \dots, \phi_n}_{\text{Succedent}}$$

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables:

 ϕ, ψ, \ldots match formulas, Γ, Δ, \ldots match sets of formulas

Characterize infinitely many sequents with a single schematic sequent:

Example: $\Gamma \Rightarrow \Delta$, $\phi \land \psi$

Matches any sequent with occurrence of conjunction in succedent We call $\phi \wedge \psi$ main formula and Γ , Δ side formulae of sequent.

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

Rule Name
$$\frac{\Gamma_1 \Rightarrow \Delta_1 \dots \ \Gamma_n \Rightarrow \Delta_n}{\underbrace{\Gamma \Rightarrow \Delta}_{\text{conclusion}}}.$$

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

Rule Name
$$\frac{\Gamma_1\Rightarrow\Delta_1\dots\,\Gamma_n\Rightarrow\Delta_n}{\underset{\text{conclusion}}{\overbrace{\Gamma\Rightarrow\Delta}}}\;.$$

Example:

and Right
$$\frac{\Gamma \Rightarrow \phi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$$
.

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

Rule Name
$$\frac{\Gamma_1\Rightarrow\Delta_1\dots\,\Gamma_n\Rightarrow\Delta_n}{\Gamma\Rightarrow\Delta}\ .$$
 conclusion

Example:

and Right
$$\frac{\Gamma \Rightarrow \phi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$$
.

Informal meaning:

In order to prove that Γ entails $(\phi \wedge \psi) \vee \Delta$ we need to prove that:

 Γ entails $\phi \lor \Delta$ and

 Γ entails $\psi \vee \Delta$

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

Rule Name
$$\frac{\Gamma_1\Rightarrow\Delta_1\dots\,\Gamma_n\Rightarrow\Delta_n}{\Gamma\Rightarrow\Delta}\;.$$
 conclusion

Example:

and Right
$$\frac{\Gamma \Rightarrow \phi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$$
.

Sound rule (essential): If
$$\models (\Gamma_1 \to \Delta_1)$$
 and ... $\models (\Gamma_n \to \Delta_n)$ then $\models (\Gamma \to \Delta)$

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

Rule Name
$$\frac{\Gamma_1\Rightarrow\Delta_1\dots\,\Gamma_n\Rightarrow\Delta_n}{\Gamma\Rightarrow\Delta}\;.$$
 conclusion

Example:

and Right
$$\frac{\Gamma \Rightarrow \phi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$$
.

Sound rule (essential): If $\models (\Gamma_1 \to \Delta_1)$ and ... and $\models (\Gamma_n \to \Delta_n)$ then $\models (\Gamma \to \Delta)$

Complete rule (desirable): If $\models (\Gamma \rightarrow \Delta)$ then $\models (\Gamma_1 \rightarrow \Delta_1), \ldots \models (\Gamma_n \rightarrow \Delta_n)$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma{\Rightarrow}\phi,\Delta}{\Gamma,\neg\phi{\Rightarrow}\Delta}$	$\frac{\Gamma,\phi\!\Rightarrow\!\Delta}{\Gamma\!\Rightarrow\!\neg\phi,\Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma{\Rightarrow}\phi,\Delta}{\Gamma,\neg\phi{\Rightarrow}\Delta}$	$\frac{\Gamma,\phi{\Rightarrow}\Delta}{\Gamma{\Rightarrow} eg\phi,\Delta}$
and	$\frac{\Gamma, \phi, \psi \Rightarrow \Delta}{\Gamma, \phi \land \psi \Rightarrow \Delta}$	$\frac{\Gamma {\Rightarrow} \phi, \Delta \qquad \Gamma {\Rightarrow} \psi, \Delta}{\Gamma {\Rightarrow} \phi {\wedge} \psi, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma{\Rightarrow}\phi,\Delta}{\Gamma, eg\phi{\Rightarrow}\Delta}$	$\frac{\Gamma,\phi{\Rightarrow}\Delta}{\Gamma{\Rightarrow} eg\phi,\Delta}$
and	$\frac{\Gamma, \phi, \psi \Rightarrow \Delta}{\Gamma, \phi \land \psi \Rightarrow \Delta}$	$\frac{\Gamma {\Rightarrow} \phi, \Delta \qquad \Gamma {\Rightarrow} \psi, \Delta}{\Gamma {\Rightarrow} \phi {\wedge} \psi, \Delta}$
or	$\frac{\Gamma, \phi \Rightarrow \Delta \qquad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \phi \lor \psi \Rightarrow \Delta}$	$\frac{\Gamma{\Rightarrow}\phi,\psi,\Delta}{\Gamma{\Rightarrow}\phi{\vee}\psi,\Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma{\Rightarrow}\phi,\Delta}{\Gamma,\neg\phi{\Rightarrow}\Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Rightarrow \Delta}{\Gamma, \phi \land \psi \Rightarrow \Delta}$	$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$
or	$\frac{\Gamma, \phi \Rightarrow \Delta \qquad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \phi \lor \psi \Rightarrow \Delta}$	$\frac{\Gamma{\Rightarrow}\phi{,}\psi{,}\Delta}{\Gamma{\Rightarrow}\phi{\vee}\psi{,}\Delta}$
imp	$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \phi \rightarrow \psi \Rightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \rightarrow \psi, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma{\Rightarrow}\phi,\Delta}{\Gamma,\neg\phi{\Rightarrow}\Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Rightarrow \Delta}{\Gamma, \phi \land \psi \Rightarrow \Delta}$	$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$
or	$\frac{\Gamma, \phi \Rightarrow \Delta \qquad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \phi \lor \psi \Rightarrow \Delta}$	$\frac{\Gamma{\Rightarrow}\phi{,}\psi{,}\Delta}{\Gamma{\Rightarrow}\phi{\vee}\psi{,}\Delta}$
imp	$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \phi \rightarrow \psi \Rightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \rightarrow \psi, \Delta}$

close
$$\frac{}{\Gamma,\phi\Rightarrow\phi,\Delta}$$
 true $\frac{}{\Gamma\Rightarrow \mathsf{true},\Delta}$ false $\frac{}{\Gamma,\mathsf{false}\Rightarrow\Delta}$

Justification of Rules

Compute rules by applying semantic definitions

Justification of Rules

Compute rules by applying semantic definitions

orRight
$$\frac{\Gamma \Rightarrow \phi, \psi, \Delta}{\Gamma \Rightarrow \phi \lor \psi, \Delta}$$

Follows directly from semantics of sequents

Justification of Rules

Compute rules by applying semantic definitions

orRight
$$\frac{\Gamma \Rightarrow \phi, \psi, \Delta}{\Gamma \Rightarrow \phi \lor \psi, \Delta}$$

Follows directly from semantics of sequents

and Right
$$\frac{\Gamma \Rightarrow \phi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$$
 $\models \Gamma \rightarrow (\phi \land \psi) \lor \Delta \text{ iff } (\models \Gamma \rightarrow \phi \lor \Delta \text{ and } \models \Gamma \rightarrow \psi \lor \Delta)$

Sequent Calculus Proofs

Goal to prove: $\mathcal{G} = (\psi_1, \dots, \psi_m \Rightarrow \phi_1, \dots, \phi_n)$

Sequent Calculus Proofs

Goal to prove:
$$\mathcal{G} = (\psi_1, \dots, \psi_m \Rightarrow \phi_1, \dots, \phi_n)$$

- find rule R whose conclusion matches \mathcal{G}
- instantiate R such that conclusion identical to \mathcal{G}
- recursively find proofs for resulting premisses $\mathcal{G}_1, ..., \mathcal{G}_r$
- tree structure with goal as root
- close proof branch when rule without premises encountered

$$\Rightarrow (p \land (p \rightarrow q)) \rightarrow q)$$

$$\begin{array}{c} p, (p \rightarrow q) \Rightarrow q \\ \hline \hline p \wedge (p \rightarrow q) \Rightarrow q \\ \hline \Rightarrow (p \wedge (p \rightarrow q)) \rightarrow q) \end{array} \qquad \text{(and), left} \\ \hline \Rightarrow (p \wedge (p \rightarrow q)) \rightarrow q) \\ \hline \end{array}$$

$$p\Rightarrow q, p \quad p, q\Rightarrow q$$
 $p, (p o q) \Rightarrow q$
 $p \wedge (p o q) \Rightarrow q$
 $\Rightarrow (p \wedge (p o q)) o q)$

A Simple Proof

$$egin{aligned} \overline{p} & \Rightarrow q, \overline{p} & \overline{p}, q \Rightarrow q \ \hline p, (p
ightarrow q) & \Rightarrow q \ \hline p \wedge (p
ightarrow q) & \Rightarrow q \ \hline \Rightarrow (p \wedge (p
ightarrow q))
ightarrow q) \end{aligned}$$

A Simple Proof

close * close *
$$p \Rightarrow q, p \qquad p, q \Rightarrow q$$

$$p, (p \rightarrow q) \Rightarrow q$$

$$p \land (p \rightarrow q) \Rightarrow q$$

$$\Rightarrow (p \land (p \rightarrow q)) \rightarrow q$$

A proof is closed iff all its branches are closed

Soundness, Completeness, Termination

Soundness and completeness can be proved for every rule:

Sound: If
$$\models (\Gamma_1 \to \Delta_1)$$
 and ... and $\models (\Gamma_n \to \Delta_n)$ then $\models (\Gamma \to \Delta)$

Complete: If
$$\models (\Gamma \rightarrow \Delta)$$
 then $\models (\Gamma_1 \rightarrow \Delta_1), \ldots \models (\Gamma_n \rightarrow \Delta_n)$

Soundness, Completeness

Soundness and completeness can be proved for every rule:

Sound: If
$$\models (\Gamma_1 \to \Delta_1)$$
 and ... and $\models (\Gamma_n \to \Delta_n)$ then $\models (\Gamma \to \Delta)$

Complete: If
$$\models (\Gamma \rightarrow \Delta)$$
 then $\models (\Gamma_1 \rightarrow \Delta_1), \ldots \models (\Gamma_n \rightarrow \Delta_n)$

Consequence: The following are equivalent:

- (1) $\Gamma \models \Delta$
- (2) there exists a proof in the sequent calculus for $\Gamma \Rightarrow \Delta$.

Overview

Propositional classical logic

Proof systems: clausal/non-clausal

- non-clausal: Hilbert calculus

sequent calculus

- clausal: Resolution; DPLL (translation to CNF needed)
- Binary Decision Diagrams

The Propositional Resolution Calculus

Resolution inference rule:

$$\frac{C \vee A \qquad \neg A \vee D}{C \vee D}$$

Terminology: $C \lor D$: resolvent; A: resolved atom

(Positive) factorisation inference rule:

$$\frac{C \vee A \vee A}{C \vee A}$$

The Resolution Calculus Res

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by propositional clauses and atoms we obtain an inference rule.

As " \vee " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

Sample Refutation

1.
$$\neg P \lor \neg P \lor Q$$
 (given)

 2. $P \lor Q$
 (given)

 3. $\neg R \lor \neg Q$
 (given)

 4. R
 (given)

 5. $\neg P \lor Q \lor Q$
 (Res. 2. into 1.)

 6. $\neg P \lor Q$
 (Fact. 5.)

 7. $Q \lor Q$
 (Res. 2. into 6.)

 8. Q
 (Fact. 7.)

 9. $\neg R$
 (Res. 8. into 3.)

 10. \bot
 (Res. 4. into 9.)

Resolution with Implicit Factorization *RIF*

$$\frac{C \vee A \vee \ldots \vee A \qquad \neg A \vee D}{C \vee D}$$

1.
$$\neg P \lor \neg P \lor Q$$
 (given)

2.
$$P \lor Q$$
 (given)

3.
$$\neg R \lor \neg Q$$
 (given)

4.
$$R$$
 (given)

5.
$$\neg P \lor Q \lor Q$$
 (Res. 2. into 1.)

6.
$$Q \lor Q \lor Q$$
 (Res. 2. into 5.)

7.
$$\neg R$$
 (Res. 6. into 3.)

8.
$$\perp$$
 (Res. 4. into 7.)

Soundness and Completeness

Theorem 1.6. Propositional resolution is sound.

for both the resolution rule and the positive factorization rule the conclusion of the inference is entailed by the premises.

Theorem 1.7. Propositional resolution is refutationally complete.

If $N \models \bot$ we can deduce \bot starting from N and using the inference rules of the propositional resolution calculus.

The DPLL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set *N* of clauses), check whether it is satisfiable (and optionally: output *one* solution, if it is satisfiable).

Satisfiability of Clause Sets

 $A \models N$ if and only if $A \models C$ for all clauses C in N.

 $\mathcal{A} \models C$ if and only if $\mathcal{A} \models L$ for some literal $L \in C$.

Partial Valuations

Since we will construct satisfying valuations incrementally, we consider partial valuations (that is, partial mappings $\mathcal{A}:\Pi \to \{0,1\}$).

We start with an empty valuation and try to extend it step by step to all variables occurring in N.

If A is a partial valuation, then literals and clauses can be true, false, or undefined under A.

A clause is true under \mathcal{A} if one of its literals is true; it is false (or "conflicting") if all its literals are false; otherwise it is undefined (or "unresolved").

Unit Clauses

Observation:

Let A be a partial valuation. If the set N contains a clause C, such that all literals but one in C are false under A, then the following properties are equivalent:

- there is a valuation that is a model of N and extends A.
- there is a valuation that is a model of N and extends \mathcal{A} and makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.

Pure Literals

One more observation:

Let A be a partial valuation and P a variable that is undefined under A. If P occurs only positively (or only negatively) in the unresolved clauses in N, then the following properties are equivalent:

- \bullet there is a valuation that is a model of N and extends A.
- there is a valuation that is a model of N and extends A and assigns true (false) to P.

P is called a pure literal.

Example (Idea)

A succinct formulation:

State: M||F,

where:

- M partial assignment (sequence of literals), some literals are annotated (L^d : decision literal)

- F clause set.

A succinct formulation

UnitPropagation

$$M||F, C \vee L \Rightarrow M, L||F, C \vee L$$

 $M||F,C\vee L\Rightarrow M,L||F,C\vee L$ if $M\models \neg C$, and L undef. in M

Decide

$$M||F \Rightarrow M, L^d||F$$

if L or $\neg L$ occurs in F, L undef. in M

Fail

$$M||F, C \Rightarrow Fail$$

if $M \models \neg C$, M contains no decision literals

Backjump

$$M, L^d, N||F \Rightarrow M, L'||F$$

if
$$\begin{cases} \text{ there is some clause } C \lor L' \text{ s.t.:} \\ F \models C \lor L', M \models \neg C, \\ L' \text{ undefined in } M \\ L' \text{ or } \neg L' \text{ occurs in } F. \end{cases}$$

Example

 Assignment:	Clause set:	
Ø	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
$P_1{}^d$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp
$P_1^d P_2$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
$P_1^d P_2 P_3^d$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp
$P_1^{\ d} P_2 P_3^{\ d} P_4$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
$P_1^{\ d} P_2 P_3^{\ d} P_4 P_5^{\ d}$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp
$P_1^{\ d}P_2P_3^{\ d}P_4P_5^{\ d}\neg P_6$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Backtrac
$P_1^{\ d}P_2P_3^{\ d}P_4\neg P_5$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	