Formal Specification and Verification

Classical logic (6) 24.11.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now

- Propositional logic
- First-order logic

Syntax

Semantics

Algorithmic Problems/Undecidability

Logical Theories (definition, examples)

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ -formulae. the models of \mathcal{F} : $\mathsf{Mod}(\mathcal{F}) = \{\mathcal{A} \in \Sigma\text{-}\mathsf{alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F}\}$

Semantic view

given a class ${\mathcal M}$ of $\Sigma\text{-algebras}$

the first-order theory of \mathcal{M} : Th $(\mathcal{M}) = \{G \in F_{\Sigma}(X) \text{ closed } | \mathcal{M} \models G\}$

Theories

 ${\cal F}$ set of (closed) first-order formulae

 $Mod(\mathcal{F}) = \{A \in \Sigma\text{-}alg \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F}\}$

 ${\mathcal M}$ class of $\Sigma\text{-algebras}$

 $\mathsf{Th}(\mathcal{M}) = \{ G \in F_{\Sigma}(X) \text{ closed } | \mathcal{M} \models G \}$

 $\begin{aligned} \mathsf{Th}(\mathsf{Mod}(\mathcal{F})) \text{ the set of formulae true in all models of } \mathcal{F} \\ \text{ represents exactly the set of consequences of } \mathcal{F} \end{aligned}$

Theories

 \mathcal{F} set of (closed) first-order formulae Mod $(\mathcal{F}) = \{A \in \Sigma \text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F}\}$

 ${\mathcal M}$ class of $\Sigma\text{-algebras}$

 $\mathsf{Th}(\mathcal{M}) = \{ G \in F_{\Sigma}(X) \text{ closed } | \mathcal{M} \models G \}$

Th(Mod(\mathcal{F})) the set of formulae true in all models of \mathcal{F} represents exactly the set of consequences of \mathcal{F}

Note: $\mathcal{F} \subseteq \mathsf{Th}(\mathsf{Mod}(\mathcal{F}))$ (typically strict) $\mathcal{M} \subseteq \mathsf{Mod}(\mathsf{Th}(\mathcal{M}))$ (typically strict)

Examples

1. Groups

Let $\Sigma = (\{e/0, */2, i/1\}, \emptyset)$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\begin{array}{lll} \forall x, y, z & x * (y * z) \approx (x * y) * z \\ \forall x & x * i(x) \approx e & \wedge & i(x) * x \approx e \\ \forall x & x * e \approx x & \wedge & e * x \approx x \end{array}$$

Every group $\mathcal{G} = (G, e_G, *_G, i_G)$ is a model of \mathcal{F}

 $\mathsf{Mod}(\mathcal{F})$ is the class of all groups $\mathcal{F}\subset\mathsf{Th}(\mathsf{Mod}(\mathcal{F}))$

Examples

2. Linear (positive)integer arithmetic

Let $\Sigma = (\{0/0, s/1, +/2\}, \{\leq /2\})$ Let $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, \leq)$ the standard interpretation of integers. $\{\mathbb{Z}_+\} \subset Mod(Th(\mathbb{Z}_+))$

3. Uninterpreted function symbols

Let $\Sigma = (\Omega, \Pi)$ be arbitrary

Let $\mathcal{M} = \Sigma$ -alg be the class of all Σ -structures

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -algebras.

Examples

4. Lists

Let
$$\Sigma = (\{\operatorname{car}/1, \operatorname{cdr}/1, \operatorname{cons}/2\}, \emptyset)$$

Let ${\mathcal F}$ be the following set of list axioms:

$$car(cons(x, y)) \approx x$$

 $cdr(cons(x, y)) \approx y$
 $cons(car(x), cdr(x)) \approx x$

 $\mathsf{Mod}(\mathcal{F})$ class of all models of \mathcal{F}

 $\mathsf{Th}_{\mathsf{Lists}} = \mathsf{Th}(\mathsf{Mod}(\mathcal{F}))$ theory of lists (axiomatized by \mathcal{F})

For first-order logic without equality:

Assume that Ω contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ -algebra \mathcal{A} such that

• $U_{\mathcal{A}} = \mathsf{T}_{\Sigma}$ (= the set of ground terms over Σ)

•
$$f_{\mathcal{A}}:(s_1,\ldots,s_n)\mapsto f(s_1,\ldots,s_n), f/n\in\Omega$$

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $p/m \in \Pi$ may be freely interpreted as relations $p_{\mathcal{A}} \subseteq \mathsf{T}_{\Sigma}^{m}$.

Proposition 2.12

Every set of ground atoms I uniquely determines a Herbrand interpretation \mathcal{A} via

$$(s_1,\ldots,s_n)\in p_\mathcal{A}$$
 : \Leftrightarrow $p(s_1,\ldots,s_n)\in I$

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ -ground atoms.

Herbrand Interpretations

$$\begin{array}{l} \textit{Example: } \Sigma_{\textit{Pres}} = \left(\{0/0, s/1, +/2\}, \ \{$$

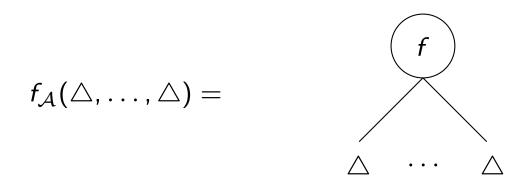
First-order logic with equality.

We assume that $\Pi = \emptyset$.

Term algebras

A term algebra (over $\Sigma)$ is a $\Sigma\text{-algebra}\ \mathcal{A}$ such that

- $U_{\mathcal{A}} = \mathsf{T}_{\Sigma}$ (= the set of ground terms over Σ)
- $f_{\mathcal{A}}:(s_1,\ldots,s_n)\mapsto f(s_1,\ldots,s_n), f/n\in\Omega$



In other words, *values are fixed* to be ground terms and *functions are fixed* to be the term constructors.

Free algebras

Let ${\mathcal K}$ be the class of $\Sigma\text{-algebras}$ which satisfy a set of axioms which are either equalities

$$\forall x: t(x) pprox s(x)$$

or implications:

$$\forall x: t_1(x) \approx s_1(x) \wedge \cdots \wedge t_n(x) \approx s_n(x) \rightarrow t(x) \approx s(x)$$

We can construct the "most general" model in \mathcal{K} :

- Construct the term algebra $T_{\Sigma}(X)$ (resp. T_{Σ})
- Identify all terms t, t' such that K ⊨ t ≈ t'
 (all terms which become equal as a consequence of the axioms).
 ~ congruence relation

Construct the algebra of equivalence classes: $T_{\Sigma}(X)/\sim$ (resp. T_{Σ}/\sim)

• $T_{\Sigma}(X)/\sim$ is the free algebra in \mathcal{K} freely generated by X. T_{Σ}/\sim is the free algebra in \mathcal{K} .

Universal property of the free algebras

For every $\mathcal{A} \in \mathcal{K}$ and every $\beta : X \to \mathcal{A}$ there exists a unique extension β' of β which is an algebra homomorphism:

 $\beta': T_{\Sigma}(X)/ \sim \rightarrow \mathcal{A}$

 $T_{\Sigma}(X)$ is the free algebra freely generated by X for the class of all algebras of type Σ .

Let X be a set of symbols and X^* be the class of all finite strings of elements in X, including the empty string.

We construct the monoid $(X^*, \cdot, 1)$ by defining \cdot to be concatenation, and 1 is the empty string.

 $(X^*, \cdot, 1)$ is the free monoid freely generated by X.

- Specification for program/system
- Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required properties.

• Specification languages for describing programs/processes/systems

- Specification languages for describing programs/processes/systems
 - Model based specification
 - Axiom-based specification
 - Declarative specifications

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory Axiom-based specification

Declarative specifications

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ -calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ -calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE

• Specification languages for properties of programs/processes/systems

Temporal logic

Algebraic specification

- appropriate for specifying the interface of a module or class
- enables verification of implementation w.r.t. specification
- for every ADT operation: argument and result types (sorts)
- semantic equations over operations (axioms) e.g. for every combination of "defined function" (e.g. top, pop) and constructor with the corresponding sort (e.g. push, empty)
- problem: consistency?, completeness?

fmod NATSTACK is
 sorts Stack .
 protecting NAT .
 op empty : -> Stack .
 op push : Nat Stack -> Stack .
 op pop : Stack -> Stack .
 op top : Stack -> Nat .
 op length : Stack -> Nat .

var S S2 : Stack . var X Y : Element . eq pop(push(X,S)) = S . eq top(push(X,S)) = X . eq length(empty) = 0 . eq length(push(X,S)) = 1 + length(S) .

endfm

Example: Algebraic specification

reduce pop(push(X,S)) == S.

reduce top(pop(push(X,push(Y,S)))) == Y.

reduce S == push(X,S2) implies push(top(S),pop(S)) == S.

 $\label{eq:reduce} \mathsf{reduce} \; \mathsf{S} == \mathsf{push}(\mathsf{X},\mathsf{S2}) \; \mathsf{implies} \; \mathsf{length}(\mathsf{pop}(\mathsf{S})) + 1 == \mathsf{length}(\mathsf{S}) \; .$

- the equations can be used as term rewriting rules
- this allows proving properties of the specification

Signatures: as in FOL (S, Ω, Π)

Example:

$$\begin{array}{ll} \textit{STACK} = (& \{\textit{Stack},\textit{Nat}\}, \\ & \{\texttt{empty}: \epsilon \rightarrow \textit{Stack}, \\ & \texttt{push}:\textit{Nat} \times \textit{Stack} \rightarrow \textit{Stack}, \\ & \texttt{pop}:\textit{Stack} \rightarrow \textit{Stack}, \\ & \texttt{top}:\textit{Stack} \rightarrow \textit{Stack}, \\ & \texttt{top}:\textit{Stack} \rightarrow \textit{Nat}, \\ & \texttt{length}:\textit{Stack} \rightarrow \textit{Nat}, \\ & \texttt{0}: \epsilon \rightarrow \textit{Nat}, \texttt{1}: \epsilon \rightarrow \textit{Nat} \\ & \} \end{array}$$

Semantics of Algebraic Specifications

Σ -algebras

Observations

- different Σ -algebras are not necessarily "equivalent"
- we seek the most "abstract" Σ -algebra, since it anticipates as little implementation decisions as possible

Semantics of Algebraic Specifications

Σ -algebras

Observations

- \bullet different $\Sigma\text{-algebras}$ are not necessarily "equivalent"
- we seek the most "abstract" Σ -algebra, since it anticipates as little implementation decisions as possible

No equations: Term algebras

Equations/Horn clauses: free algebras

$$egin{aligned} &\mathcal{T}_{\Sigma}/\sim, ext{ where} \ &t\sim t' ext{ iff} \ &\mathcal{A}x\models tpprox t' ext{ iff} \ & ext{For every }\mathcal{A}\in ext{Mod}(\mathcal{A}x), \ \mathcal{A}\models tpprox t' \end{aligned}$$

Algebraic Specification

"A gentle introduction to CASL"

M. Bidoit and P. Mosses

http://www.lsv.ens-cachan.fr/~bidoit/GENTLE.pdf

(cf. also the slides of the lecture available online)

A subset of the slides was discussed today.