Formal Specification and Verification

Classical logic (6)
24.11.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until nhow

e Propositional logic
e First-order logic
Syntax
Semantics
Algorithmic Problems/Undecidability

Logical Theories (definition, examples)

Logical theories

Syntactic view
first-order theory: given by a set F of (closed) first-order ¥ -formulae.

the models of 7: Mod(F) ={A € X-alg| A= G, forall Gin F}

Semantic view
given a class M of 2-algebras
the first-order theory of M: Th(M) = {G € Fx(X) closed | M = G}

Theories

F set of (closed) first-order formulae

Mod(F) ={Ae€ X-alg| A G, forall Gin F}

M class of X-algebras
Th(M) = {G € Fx(X) closed | M = G}

Th(Mod(F)) the set of formulae true in all models of F
represents exactly the set of consequences of F

Theories

F set of (closed) first-order formulae

Mod(F) ={Ae€ X-alg| A G, forall Gin F}

M class of X-algebras
Th(M) = {G € Fx(X) closed | M = G}

Th(Mod(F)) the set of formulae true in all models of F
represents exactly the set of consequences of F

Note: F C Th(Mod(F)) (typically strict)
M C Mod(Th(M)) (typically strict)

Examples

1. Groups
Let ¥ = ({e/0,%/2,i/1},0)

Let F consist of all (universally quantified) group axioms:

Vx,y,z xx*x(yxz)~(x*xy)xz
Vx xxi(x) e N i(xX)xx=e

Vx X*erR X N exX~X
Every group G = (G, eg, *¢, ic) is a model of F

Mod(F) is the class of all groups
F C Th(Mod(F))

Examples

2. Linear (positive)integer arithmetic
Let > = ({0/0,s/1, +/2},{< /2})
Let Z+ = (Z,0, s, +, <) the standard interpretation of integers.

{Z+} C Mod(Th(Z+))

3. Uninterpreted function symbols
Let X = (€2, 1) be arbitrary
Let M = 2 -alg be the class of all X-structures

The theory of uninterpreted function symbols is Th(X-alg) the family
of all first-order formulae which are true in all 2-algebras.

Examples

4. Lists
Let ¥ = ({car/1,cdr/1, cons/2}, ()

Let F be the following set of list axioms:

Q
X

car(cons(x, y))

cdr(cons(x, y))

Q
<

cons(car(x),cdr(x)) =~ x

Mod(F) class of all models of F
Thiists = Th(Mod(F)) theory of lists (axiomatized by F)

Herbrand Interpretations

For first-order logic without equality:
Assume that €2 contains at least one constant symbol.

A Herbrand interpretation (over ¥) is a X-algebra A such that
e Uy = Ty (= the set of ground terms over ¥)

o fu:(s1,....80)— f(s1,...,5,), f/n€EQ

Herbrand Interpretations

In other words, values are fixed to be ground terms and functions
are fixed to be the term constructors. Only predicate symbols
p/m € I1 may be freely interpreted as relations p4 C TE.

Proposition 2.12
Every set of ground atoms [/ uniquely determines a Herbrand

interpretation A via

(s1,...,5,) € pa &= p(si,...,sp) €l

Thus we shall identify Herbrand interpretations (over ¥) with
sets of 2 -ground atoms.

10

Herbrand Interpretations

Example: ¥ ps = ({0/0,s/1,+/2}, {</2,</2})
N as Herbrand interpretation over 2 pjes:
I={ 0<0, 0<s(0), 0< s(s(0)), ...,
0+0<0, 0+0<s(0), ...,
., (s(0) +0) +s(0) <s(0)+ (s(0) +s(0))

s(0) 4 0 < s(0) + 0+ 0 + s(0)
)

11

“Most general’ models

First-order logic with equality.
We assume that M = (.

Term algebras

A term algebra (over X) is a X-algebra A such that
e Uy = Ty (= the set of ground terms over ¥)

® fa:(s1,...,80)— f(s1,...,8n), f/n€Q

FA(DN, ... D) =

12

Term algebras

In other words, values are fixed to be ground terms and functions
are fixed to be the term constructors.

13

Free algebras

Let C be the class of X -algebras which satisfy a set of axioms which are either
equalities
Vx @ t(x) =~ s(x)

or implications:

Vx @ ti(x) = si(x) A -+ A th(x) = sp(x) = t(x) = s(x)

We can construct the “most general” model in IC:
e Construct the term algebra Tx(X) (resp. Tyx)

e Identify all terms t, t’ such that K =t ~ t’
(all terms which become equal as a consequence of the axioms).

~ congruence relation

Construct the algebra of equivalence classes: Ty (X)/~ (resp. Tx/~)

e Tx(X)/~ is the free algebra in IC freely generated by X.
T/~ is the free algebra in IC.

14

Universal property of the free algebras

For every A € K and every 3 : X — A there exists a unique extension /3’
of B which is an algebra homomorphism:

B Ts(X)) ~— A

15

Examples

Tx(X) is the free algebra freely generated by X for the class of all algebras
of type X.

Let X be a set of symbols and X* be the class of all finite strings of
elements in X, including the empty string.

We construct the monoid (X*, -, 1) by defining - to be concatenation, and

1 is the empty string.

(X*,-,1) is the free monoid freely generated by X.

16

Formal specification

e Specification for program /system

e Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.

17

Formal specification

e Specification languages for describing programs/processes/systems

e Specification languages for properties of programs/processes/systems

18

Formal specification

e Specification languages for describing programs/processes/systems

Model based specification

Axiom-based specification

Declarative specifications

e Specification languages for properties of programs/processes/systems

19

Formal specification

e Specification languages for describing programs/processes/systems
Model based specification
transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

Declarative specifications

e Specification languages for properties of programs/processes/systems

20

Formal specification

e Specification languages for describing programs/processes/systems
Model based specification
transition systems, abstract state machines, specifications based on set theory
Axiom-based specification
algebraic specification

Declarative specifications

e Specification languages for properties of programs/processes/systems

21

Formal specification

e Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory
Axiom-based specification

algebraic specification
Declarative specifications

logic based languages (Prolog)

functional languages, A\-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

e Specification languages for properties of programs/processes/systems

22

Formal specification

e Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory
Axiom-based specification

algebraic specification
Declarative specifications

logic based languages (Prolog)

functional languages, A-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE
e Specification languages for properties of programs/processes/systems

Temporal logic

23

Algebraic specification

e appropriate for specifying the interface of a module or class
e enables verification of implementation w.r.t. specification
e for every ADT operation: argument and result types (sorts)

e semantic equations over operations (axioms) e.g. for every
combination of “defined function” (e.g. top, pop) and constructor
with the corresponding sort (e.g. push, empty)

e problem: consistency?, completeness?

24

Example: Algebraic specification

fmod NATSTACK 1s

sorts Stack
protecting NAT
->» Stack
Nat Stack —-» Stack

op empty
op push
op pop : Stack —-> Stack
op top : Stack —> Nat

op length Stack -> Nat

var S 52 1 Stack
var X Y : Element

eq pop(push{¥,3); = S
eq top(push(¥X,5)) = X
eq length {empty) = 0

eq length {push(¥,5)) =
1 + length({S)

endfm

25

Example: Algebraic specification

reduce pop(push(X,S)) == S .
reduce top(pop(push(X,push(Y,S)))) ==
reduce S == push(X,52) implies push(top(S),pop(S)) ==

reduce S == push(X,52) implies length(pop(S)) + 1 == length(S) .

e the equations can be used as term rewriting rules

e this allows proving properties of the specification

26

Syntax of Algebraic Specifications

Signatures: as in FOL (S, Q,)
Example:

STACK = ({Stack, Nat},
{empty : ¢ — Stack,
push : Nat x Stack — Stack,
pop : Stack — Stack,
top : Stack — Nat,
length : Stack — Nat,
O:e€— Nat,1:e — Nat

}

27

Semantics of Algebraic Specifications

> -algebras
Observations
e different 2 -algebras are not necessarily “equivalent”

e we seek the most “abstract” 2 -algebra,
since it anticipates as little implementation decisions as possible

28

Semantics of Algebraic Specifications

> -algebras
Observations
e different 2 -algebras are not necessarily “equivalent”

e we seek the most “abstract” 2 -algebra,
since it anticipates as little implementation decisions as possible

No equations: Term algebras
Equations/Horn clauses: free algebras
Ty / ~, where

t ~ t’ iff
Ax =t =~ t’ iff
For every A € Mod(Ax), A=t~ t’

29

Algebraic Specification

“A gentle introduction to CASL"

M. Bidoit and P. Mosses
http://www.lsv.ens-cachan.fr/~bidoit/GENTLE. pdf

(cf. also the slides of the lecture available online)

A subset of the slides was discussed today.

30

