Formal Specification and Verification

Temporal logic (2)

10.01.2017

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Last time

- Motivation
- Example
- Transition systems
 - computations
 - computation trees

Transition systems

We use an abstract model of reactive and concurrent systems.

Definition (Transition system, simplified version)

Let Π be a finite set of propositional variables.

A transition system is a tuple (S, \rightarrow, S_i, L) with

- *S* a non-empty set of states;
- $\rightarrow \subseteq S \times S$ is a transition relation that is total, i.e. for each state $s \in S$, there is a state $s' \in S$ such that $s \rightarrow s'$;
- $S_i \subseteq S$ is a set of initial states;
- $L: S \to \{0, 1\}^{AP}$ is a valuation function which we will also regard as a function $L: AP \times S \to \{0, 1\}$

Computations

Let $TS = (S, \rightarrow, S_i, L)$ be a transition system.

A computation (or execution) of *TS* is an infinite sequence $s_0s_1...$ of states such that $s_0 \in S_i$ and $s_i \rightarrow s_{i+1}$ for all $i \ge 0$.

Computation trees

Transition systems can be non-deterministic, i.e., for an $s \in S$, the set $\{s' \mid s \rightarrow s'\}$ can have arbitrary cardinality > 0.

Thus, in general there is more than a single computation.

Instead of considering single computations in isolation, we can arrange all of them in a computation tree.

Informally, for $s \in S_i$, the (infinite) computation tree T(TS, s) of TS at $s \in S$ is inductively constructed as follows:

- use *s* as the root node;
- for each leaf s' of the tree, add successors $\{t \in S \mid s' \to t\}$.

Syntax

 Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

- \bot , \top and each propositional variable $P \in \Pi$ are formulae;
- if *F*, *G* are formulae, then so are $F \wedge G$, $F \vee G$, $\neg F$;
- if F, G are formulae, then so are $\bigcirc F$ and FUG

Syntax

 Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

- \bot , \top and each propositional variable $P \in \Pi$ are formulae;
- if *F*, *G* are formulae, then so are $F \wedge G$, $F \vee G$, $\neg F$;
- if F, G are formulae, then so are $\bigcirc F$ and FUG

Remark: Instead of $\bigcirc F$ in some books also XF is used.

Semantics

 Transition systems (S, →, L) (with the property that for every s ∈ S there exists s' ∈ S with s → s' i.e. no state of the system can "deadlock"^a)

Transition systems are also simply called models in what follows.

^aThis is a technical convenience, and in fact it does not represent any real restriction on the systems we can model. If a system did deadlock, we could always add an extra state s_d representing deadlock, together with new transitions $s \rightarrow s_d$ for each s which was a deadlock in the old system, as well as $s_d \rightarrow s_d$.

Semantics

• Transition systems (S, \rightarrow, L)

(with the property that for every $s \in S$ there exists $s' \in S$ with $s \to s'$ i.e. no state of the system can "deadlock"^a)

Transition systems are also simply called models in what follows.

Computation (execution, path) in a model (S, →, L) infinite sequence of states π = s₀, s₁, s₂, ... in S such that for each i ≥ 0, s_i → s_{i+1}.

We write the path as $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$

^aThis is a technical convenience, and in fact it does not represent any real restriction on the systems we can model. If a system did deadlock, we could always add an extra state s_d representing deadlock, together with new transitions $s \rightarrow s_d$ for each s which was a deadlock in the old system, as well as $s_d \rightarrow s_d$.

Consider the path $\pi = s_0 \rightarrow s_1 \rightarrow \dots$

It represents a possible future of our system.

We write π^i for the suffix starting at s_i , e.g.,

$$\pi^3 = s_3 \rightarrow s_4 \rightarrow \dots$$

Semantics

Let $TS = (S, \rightarrow, L)$ be a model and $\pi = s_0 \rightarrow ...$ be a path in TS.

Whether π satisfies an LTL formula is defined by the satisfaction relation \models as follows:

- $\pi \models \top$
- $\pi \not\models \perp$
- $\pi \models p$ iff $p \in L(s_0)$, if $p \in \Pi$
- $\pi \models \neg F$ iff $\pi \not\models F$
- $\pi \models F \land G$ iff $\pi \models F$ and $\pi \models G$
- $\pi \models F \lor G$ iff $\pi \models F$ or $\pi \models G$
- $\pi \models \bigcirc F$ iff $\pi^1 \models F$
- $\pi \models FUG \text{ iff } \exists m \geq 0 \text{ s.t. } \pi^m \models G \text{ and } \forall k \in \{0, \ldots, m-1\} : \pi^k \models F$

Alternative way of defining the semantics:

An LTL structure M is an infinite sequence $S_0S_1...$ with $S_i \subseteq \Pi$ for all $i \ge 0$. We define satisfaction of LTL formulas in M at time points $n \in \mathbb{N}$ as follows:

- $M, n \models p \text{ iff } p \in S_n, \quad \text{if } p \in \Pi$
- $M, n \models F \land G$ iff $M, n \models F$ and $M, n \models G$
- $M, n \models F \lor G$ iff $M, n \models F$ or $M, n \models G$
- $M, n \models \neg F$ iff $M, n \not\models F$
- $M, n \models \bigcirc F$ iff $M, n + 1 \models F$
- $M, n \models FUG \text{ iff } \exists m \ge n \text{ s.t. } M, m \models G \text{ and}$ $\forall k \in \{n, \dots, m-1\} : M, k \models F$

Note that the time flow $(\mathbb{N}, <)$ is implicit.

Transition systems and LTL models

The connection between transition systems and LTL structures is as follows:

Every computation (evolution, path) of a transition system $s_0 \rightarrow s_1 \dots$ gives rise to an LTL structure.

To see this, let $TS = (S, \rightarrow, L)$ be a transition system. A computation $s_0, s_1, ...$ of TS induces an LTL structure $L(s_0)L(s_1)...$

Such an LTL structure is called a trace of TS.

• The future diamond

$$\Diamond \phi := \top \mathcal{U} \phi$$

 $\pi \models \Diamond \phi \text{ iff } \exists m \geq 0 : \pi^m \models \phi$

- The future box
 - $\Box\phi:=\neg\diamondsuit\neg\phi$
 - $\pi \models \Box \phi \text{ iff } \forall m \ge 0 : \pi^m \models \phi$

• The future diamond $\Diamond \phi := \top \mathcal{U} \phi$

Sometimes denoted also $F\phi$ $\pi \models \Diamond \phi \text{ iff } \exists m \ge 0 : \pi^m \models \phi \qquad M, n \models \Diamond \phi \text{ iff } \exists m \ge n : M, m \models \phi$

• The future box

 $\Box \phi := \neg \Diamond \neg \phi$

 $\pi \models \Box \phi \text{ iff } \forall m \ge 0 : \pi^m \models \phi$

Sometimes also denoted $G\phi$ $M, n \models \Box \phi \text{ iff } \forall m \ge n : M, m \models \phi$

- The infinitely often operator $\diamond^{\infty}\phi := \Box \diamond \phi$ $\pi \models \diamond^{\infty}\phi$ iff $\{m \ge 0 \mid \pi^m \models \phi\}$ is infinite $M, n \models \diamond^{\infty}\phi$ iff $\{m \ge n \mid M, m \models \phi\}$ is infinite
- The almost everywhere operator $\Box^{\infty}\phi := \Diamond \Box \phi$

 $\pi \models \Box^{\infty} \phi$ iff $\{m \ge 0 \mid \pi^m \not\models \phi\}$ is finite.

 $M, n \models \Box^{\infty} \phi$ iff $\{m \ge n \mid M, m \not\models \phi\}$ is finite.

• The release operator $\phi \mathcal{R} \psi := \neg (\neg \phi \mathcal{U} \neg \psi)$

$$\pi \models \phi \mathcal{R} \psi \text{ iff } (\exists m \ge 0 : \pi^m \models \phi \text{ and } \forall k < m : \pi^k \models \psi) \text{ or } (\forall k \ge 0 : \pi^k \models \psi)$$

 $M, n \models \phi \mathcal{R} \psi \text{ iff } (\exists m \ge n : M, m \models \phi \text{ and } \forall k < m : M, m \models \psi) \text{ or} \\ (\forall k \ge m : M, k \models \psi)$

Read as

" ψ always holds unless released by ϕ " i.e.,

" ψ holds permanently up to and including the first point where ϕ holds (such an ϕ -point need not exist at all)".

• The strict until operator: $FU^{<}G := \bigcirc (FUG)$

$$\pi \models F\mathcal{U}^{<}G \text{ iff } \exists m > 0: \pi^{m} \models G \land \forall k \in \{1, 2, \dots, m-1\}, \pi^{k} \models F$$

$$M, n \models FU^{<}G \text{ iff } \exists m > n : M, m \models G \land \forall k \in \{n + 1, ..., m - 1\}, M, k \models F$$

The difference between standard and strict until is that strict until requires G to happen in the strict future and that F needs not hold true of the current point.

Equivalence

We say that two LTL formulas F and G are (globally) equivalent (written $F \equiv G$) if, for all LTL structures M and $i \geq 0$, we have $M, i \models F$ iff $M, i \models G$. equivalently:

if for all transition systems T and all paths π in T we have: $\pi \models F$ iff $\pi \models G$.

Note that:

 $\bigcirc F \equiv \perp \mathcal{U}^{<}F$ and $F\mathcal{U}G \equiv G \lor (F \land (F\mathcal{U}^{<}G))$

Thus, an equally expressive version of LTL is obtained by using $\mathcal{U}^{<}$ as the only temporal operator.

This cannot be done with the standard until

Equivalence

Some useful equivalences that will be useful later on (exercise: prove them):

 $\neg \bigcirc F \equiv \bigcirc \neg F$ $\diamond \diamond F \equiv \diamond F$ $\bigcirc \diamond F \equiv \diamond \bigcirc F$ $\diamond \diamond^{\infty} F \equiv \diamond^{\infty} F \equiv \diamond^{\infty} \diamond F$ $F \mathcal{U} G \equiv \neg (\neg F \mathcal{R} \neg G)$ $F \mathcal{U} G \equiv G \lor (F \land \bigcirc (F \mathcal{U} G))$ $F \mathcal{R} G \equiv (F \land G) \lor (G \land \bigcirc (F \mathcal{R} G))$

(self-duality of next)
(idempotency of diamond)
(commutation of next with Diamond)
(absorption of diamonds by "infinitely ofter (until and release are duals)
(unfolding of until)
(unfolding of release)