
Formal Specification and Verification

Temporal logic (2)

10.01.2017

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Last time

Motivation

Example

Transition systems

computations

computation trees

2

Transition systems

We use an abstract model of reactive and concurrent systems.

Definition (Transition system, simplified version)

Let Π be a finite set of propositional variables.

A transition system is a tuple (S ,→,Si , L) with

• S a non-empty set of states;

• →⊆ S × S is a transition relation that is total, i.e.

for each state s ∈ S , there is a state s′ ∈ S such that s → s′;

• Si ⊆ S is a set of initial states;

• L : S → {0, 1}AP is a valuation function

which we will also regard as a function L : AP × S → {0, 1}

3

Computations

Let TS = (S ,→, Si , L) be a transition system.

A computation (or execution) of TS is an infinite sequence s0s1 . . . of

states such that s0 ∈ Si and si → si+1 for all i ≥ 0.

4

Computation trees

Transition systems can be non-deterministic, i.e., for an s ∈ S , the set

{s′ | s → s′} can have arbitrary cardinality > 0.

Thus, in general there is more than a single computation.

Instead of considering single computations in isolation, we can arrange all

of them in a computation tree.

Informally, for s ∈ Si , the (infinite) computation tree T (TS , s) of TS at

s ∈ S is inductively constructed as follows:

• use s as the root node;

• for each leaf s′ of the tree, add successors {t ∈ S | s′ → t}.

5

Linear Time Logic

Syntax

Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

• ⊥,⊤ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are ©F and FUG

6

Linear Time Logic

Syntax

Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

• ⊥,⊤ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are ©F and FUG

Remark: Instead of ©F in some books also XF is used.

7

Linear Time Logic

Semantics

• Transition systems (S ,→, L)

(with the property that for every s ∈ S there exists s′ ∈ S with s → s′

i.e. no state of the system can “deadlock”a)

Transition systems are also simply called models in what follows.

aThis is a technical convenience, and in fact it does not represent any

real restriction on the systems we can model. If a system did deadlock, we

could always add an extra state sd representing deadlock, together with new

transitions s → sd for each s which was a deadlock in the old system, as

well as sd → sd .

8

Linear Time Logic

Semantics

• Transition systems (S ,→, L)

(with the property that for every s ∈ S there exists s′ ∈ S with s → s′

i.e. no state of the system can “deadlock”a)

Transition systems are also simply called models in what follows.

• Computation (execution, path) in a model (S ,→, L)

infinite sequence of states π = s0, s1, s2, ... in S such that for each

i ≥ 0, si → si+1.

We write the path as s0 → s1 → s2 →
aThis is a technical convenience, and in fact it does not represent any

real restriction on the systems we can model. If a system did deadlock, we

could always add an extra state sd representing deadlock, together with new

transitions s → sd for each s which was a deadlock in the old system, as

well as sd → sd .

9

Linear Time Logic

Consider the path π = s0 → s1 →

It represents a possible future of our system.

We write πi for the suffix starting at si , e.g.,

π3 = s3 → s4 →

10

Linear Time Logic

Semantics

Let TS = (S ,→, L) be a model and π = s0 → ... be a path in TS .

Whether π satisfies an LTL formula is defined by the satisfaction relation

|= as follows:

• π |= ⊤

• π 6|=⊥

• π |= p iff p ∈ L(s0), if p ∈ Π

• π |= ¬F iff π 6|= F

• π |= F ∧ G iff π |= F and π |= G

• π |= F ∨ G iff π |= F or π |= G

• π |= ©F iff π1 |= F

• π |= FUG iff

E

m ≥ 0 s.t. πm |= G and

A

k ∈ {0, . . . ,m− 1} : πk |= F

11

Linear Time Logic

Alternative way of defining the semantics:

An LTL structure M is an infinite sequence S0S1 . . . with Si ⊆ Π for all

i ≥ 0. We define satisfaction of LTL formulas in M at time points n ∈ N as

follows:

• M, n |= p iff p ∈ Sn, if p ∈ Π

• M, n |= F ∧ G iff M, n |= F and M, n |= G

• M, n |= F ∨ G iff M, n |= F or M, n |= G

• M, n |= ¬F iff M, n 6|= F

• M, n |= ©F iff M, n + 1 |= F

• M, n |= FUG iff

E

m ≥ n s.t. M,m |= G and

A

k ∈ {n, . . . ,m − 1} : M, k |= F

Note that the time flow (N,<) is implicit.

12

Transition systems and LTL models

The connection between transition systems and LTL structures is as follows:

Every computation (evolution, path) of a transition system s0 → s1 . . .

gives rise to an LTL structure.

To see this, let TS = (S ,→,L) be a transition system.

A computation s0, s1, ... of TS induces an LTL structure

L(s0)L(s1) . . .

Such an LTL structure is called a trace of TS .

13

Abbreviations

• The future diamond

✸φ := ⊤Uφ

π |= ✸φ iff

E

m ≥ 0 : πm |= φ

• The future box

✷φ := ¬✸¬φ

π |= ✷φ iff

A

m ≥ 0 : πm |= φ

14

Abbreviations

• The future diamond

✸φ := ⊤Uφ Sometimes denoted also Fφ

π |= ✸φ iff

E

m ≥ 0 : πm |= φ M, n |= ✸φ iff

E

m ≥ n : M,m |= φ

• The future box

✷φ := ¬✸¬φ Sometimes also denoted Gφ

π |= ✷φ iff

A

m≥0 : πm |= φ M, n |= ✷φ iff

A

m≥n : M,m |= φ

15

Abbreviations

• The infinitely often operator

✸
∞φ := ✷✸φ

π |= ✸
∞φ iff {m ≥ 0 | πm |= φ} is infinite

M, n |= ✸
∞φ iff {m ≥ n | M,m |= φ} is infinite

• The almost everywhere operator

✷
∞φ := ✸✷φ

π |= ✷
∞φ iff {m ≥ 0 | πm 6|= φ} is finite.

M, n |= ✷
∞φ iff {m ≥ n | M,m 6|= φ} is finite.

16

Abbreviations

• The release operator

φRψ := ¬(¬φU¬ψ)

π |= φRψ iff (

E

m ≥ 0 : πm |= φ and

A

k < m: πk |= ψ) or

(

A

k ≥ 0 : πk |= ψ)

M, n |= φRψ iff (

E

m ≥ n : M,m |= φ and

A

k < m : M,m |= ψ) or

(

A

k ≥ m : M, k |= ψ)

Read as

“ψ always holds unless released by φ” i.e.,

“ψ holds permanently up to and including the first point where φ

holds (such an φ-point need not exist at all)”.

17

Abbreviations

• The strict until operator:

FU<G := ©(FUG)

π |= FU<G iff

E

m > 0 : πm |= G ∧

A

k ∈ {1, 2, . . . ,m − 1},πk |= F

M, n |= FU<G iff
E

m > n : M,m |= G ∧
A

k ∈ {n + 1, ...,m −

1},M, k |= F

The difference between standard and strict until is that strict until requires

G to happen in the strict future and that F needs not hold true of the

current point.

18

Equivalence

We say that two LTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all LTL structures M and i ≥ 0, we have M, i |= F iff M, i |= G .

equivalently:

if for all transition systems T and all paths π in T we have:

π |= F iff π |= G .

Note that:

© F ≡⊥ U<F and

FUG ≡ G ∨ (F ∧ (FU<G))

Thus, an equally expressive version of LTL is obtained by using U< as the

only temporal operator.

This cannot be done with the standard until

19

Equivalence

Some useful equivalences that will be useful later on (exercise: prove them):

¬© F ≡ ©¬F (self-duality of next)

✸✸F ≡ ✸F (idempotency of diamond)

©✸F ≡ ✸© F (commutation of next with Diamond)

✸✸
∞F ≡ ✸

∞F ≡ ✸
∞
✸F (absorption of diamonds by “infinitely often”)

FUG ≡ ¬(¬FR¬G) (until and release are duals)

FUG ≡ G ∨ (F ∧©(FUG)) (unfolding of until)

FRG ≡ (F ∧ G) ∨ (G ∧©(FRG)) (unfolding of release)

20

