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Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.
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Linear Time Logic

Syntax

Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

• ⊥,⊤ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are ©F and FUG

Remark: Instead of ©F in some books also XF is used.
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Linear Time Logic

Semantics

• Transition systems (S ,→, L)

(with the property that for every s ∈ S there exists s′ ∈ S with s → s′

i.e. no state of the system can “deadlock”a)

Transition systems are also simply called models in what follows.

• Computation (execution, path) in a model (S ,→, L)

infinite sequence of states π = s0, s1, s2, ... in S such that for each

i ≥ 0, si → si+1.

We write the path as s0 → s1 → s2 → . . . .
aThis is a technical convenience, and in fact it does not represent any

real restriction on the systems we can model. If a system did deadlock, we

could always add an extra state sd representing deadlock, together with new

transitions s → sd for each s which was a deadlock in the old system, as

well as sd → sd .
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Linear Time Logic

Consider the path π = s0 → s1 → ....

It represents a possible future of our system.

We write πi for the suffix starting at si , e.g.,

π3 = s3 → s4 → ....
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Linear Time Logic

Semantics

Let TS = (S ,→, L) be a model and π = s0 → ... be a path in TS .

Whether π satisfies an LTL formula is defined by the satisfaction relation

|= as follows:

• π |= ⊤

• π 6|=⊥

• π |= p iff p ∈ L(s0), if p ∈ Π

• π |= ¬F iff π 6|= F

• π |= F ∧ G iff π |= F and π |= G

• π |= F ∨ G iff π |= F or π |= G

• π |= ©F iff π1 |= F

• π |= FUG iff

E

m ≥ 0 s.t. πm |= G and

A

k ∈ {0, . . . ,m− 1} : πk |= F
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Linear Time Logic

Alternative way of defining the semantics:

An LTL structure M is an infinite sequence S0S1 . . . with Si ⊆ Π for all

i ≥ 0. We define satisfaction of LTL formulas in M at time points n ∈ N as

follows:

• M, n |= p iff p ∈ Sn, if p ∈ Π

• M, n |= F ∧ G iff M, n |= F and M, n |= G

• M, n |= F ∨ G iff M, n |= F or M, n |= G

• M, n |= ¬F iff M, n 6|= F

• M, n |= ©F iff M, n + 1 |= F

• M, n |= FUG iff

E

m ≥ n s.t. M,m |= G and

A

k ∈ {n, . . . ,m − 1} : M, k |= F

Note that the time flow (N,<) is implicit.
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Transition systems and LTL models

The connection between transition systems and LTL structures is as follows:

Every computation (evolution, path) of a transition system s0 → s1 . . .

gives rise to an LTL structure.

To see this, let TS = (S ,→,L) be a transition system.

A computation s0, s1, ... of TS induces an LTL structure

L(s0)L(s1) . . .

Such an LTL structure is called a trace of TS .
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Abbreviations

• The future diamond

✸φ := ⊤Uφ Sometimes denoted also Fφ

π |= ✸φ iff

E

m ≥ 0 : πm |= φ M, n |= ✸φ iff

E

m ≥ n : M,m |= φ

• The future box

✷φ := ¬✸¬φ Sometimes also denoted Gφ

π |= ✷φ iff

A

m≥0 : πm |= φ M, n |= ✷φ iff

A

m≥n : M,m |= φ

• The infinitely often operator

✸
∞φ := ✷✸φ

π |= ✸
∞φ iff {m ≥ 0 | πm |= φ} is infinite

M, n |= ✸
∞φ iff {m ≥ n | M,m |= φ} is infinite

• The almost everywhere operator

✷
∞φ := ✸✷φ

π |= ✷
∞φ iff {m ≥ 0 | πm 6|= φ} is finite.

M, n |= ✷
∞φ iff {m ≥ n | M,m 6|= φ} is finite.
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Abbreviations

• The release operator

φRψ := ¬(¬φU¬ψ)

π |= φRψ iff (

E

m ≥ 0 : πm |= φ and

A

k ≤ m: πk |= ψ) or

(

A

k ≥ 0 : πk |= ψ)

M, n |= φRψ iff (

E

m ≥ n : M,m |= φ and

A

k ≤ m : M,m |= ψ) or

(

A

k ≥ m : M, k |= ψ)

Read as

“ψ always holds unless released by φ” i.e.,

“ψ holds permanently up to and including the first point where φ

holds (such an φ-point need not exist at all)”.
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Abbreviations

• The strict until operator:

FU<G := ©(FUG)

π |= FU<G iff

E

m > 0 : πm |= G ∧

A

k ∈ {1, 2, . . . ,m − 1},πk |= F

M, n |= FU<G iff
E

m > n : M,m |= G ∧
A

k ∈ {n + 1, ...,m −

1},M, k |= F

The difference between standard and strict until is that strict until requires

G to happen in the strict future and that F needs not hold true of the

current point.
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Equivalence

We say that two LTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all LTL structures M and i ≥ 0, we have M, i |= F iff M, i |= G .

equivalently:

if for all transition systems T and all paths π in T we have:

π |= F iff π |= G .

Note that:

© F ≡⊥ U<F and

FUG ≡ G ∨ (F ∧ (FU<G))

Thus, an equally expressive version of LTL is obtained by using U< as the

only temporal operator.

This cannot be done with the standard until
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Equivalence

Some useful equivalences that will be useful later on (exercise: prove them):

¬© F ≡ ©¬F (self-duality of next)

✸✸F ≡ ✸F (idempotency of diamond)

©✸F ≡ ✸© F (commutation of next with Diamond)

✸✸
∞F ≡ ✸

∞F ≡ ✸
∞
✸F (absorption of diamonds by “infinitely often”)

FUG ≡ ¬(¬FR¬G) (until and release are duals)

FUG ≡ G ∨ (F ∧©(FUG)) (unfolding of until)

FRG ≡ (F ∧ G) ∨ (G ∧©(FRG)) (unfolding of release)
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Temporal Properties

A temporal property is a set of LTL structures

(those on which the property is true).

A temporal property P can be defined using an LTL formula F :

P = {M | M, 0 |= F}.

When given a transition system TS representing a reactive system and an

LTL formula F representing a temporal property,

TS satisfies F if M, 0 |= F for all traces M of TS .

In this case, we write TS |= F .

Typical properties of reactive systems that need to be checked during

verification are safety properties, liveness properties, and fairness properties.
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Safety properties

Intuitively, a safety property asserts that “nothing bad happens”

general form: Condition → ✷FSafe

Examples of safety properties:

• Mutual Exclusion. For the example:

✷(¬((A = 2) ∧ (B = 2)))

• Freedom from Deadlocks: At any time, some process should be

enabled:

✷(enabled1 ∨ · · · ∨ enabledk)

• Partial Correctness: If F is satisfied when the program starts, then G

will be satisfied if the program reaches a distinguished state:

F → ✷(Dist → G)

where Dist ∈ Π marks the distinguished state.
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Liveness properties

Intuitively, a liveness property asserts that “something good will happen”

Examples of liveness properties:

• Guaranteed Accessibility. For the example:

✷(A = 1 → ✸(A = 2)) ∧ ✷(B = 1 → ✸(B = 2))

• Responsiveness: If a request is issued, it will eventually be granted:

✷(req → ✸grant)

• Total Correctness: If F is satisfied when the program starts, then the

program terminates in a distinguished state where G is satisfied:

φ→ ✸(Dist ∧ G)

Note that, in contrast, partial correctness is a safety property.
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Fairness properties

When modelling concurrent systems, it is usually important to make some

fairness assumptions. Assume that there are k processes, that enabledi ∈ Π

is true in a state s if process #i is enabled in s for execution, and that

executedi is true in a state s if process #i has been executed to reach s.

Examples of fairness properties

• Unconditional Fairness: Every process is executed infinitely often:

∧

1≤i≤k

✸
∞executedi

Unconditional fairness is appropriate when processes can (and should!)

be executed and any time. This is not always the case.
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Fairness properties

When modelling concurrent systems, it is usually important to make some

fairness assumptions. Assume that there are k processes, that enabledi ∈ Π

is true in a state s if process #i is enabled in s for execution, and that

executedi is true in a state s if process #i has been executed to reach s.

Examples of fairness properties

• Strong Fairness: Every process enabled infinitely often is executed

infinitely often:
∧

1≤i≤k

(✸∞enabledi → ✸
∞executedi )

Processes enabled only finitely often need not be guaranteed to be

executed: they eventually and forever retract being enabled.
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Fairness properties

When modelling concurrent systems, it is usually important to make some

fairness assumptions. Assume that there are k processes, that enabledi ∈ Π

is true in a state s if process #i is enabled in s for execution, and that

executedi is true in a state s if process #i has been executed to reach s.

Examples of fairness properties

• Weak Fairness: Every process enabled almost everywhere is executed

infinitely often.

∧

1≤i≤k

(✷∞enabledi → ✸
∞executedi )

This means that a process cannot be enabled constantly in an infinite

interval without being executed in this interval.
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Semantics, Overview

TS transition system, π = s0 → s1 → . . . path in TS .

π |= F iff L(s0) . . . L(sn), 0 |= F

s state of TS .

s |= F iff (
A

π path starting in s : π |= F )

TS |= F iff π |= F for all paths π

iff s |= F for all states s of TS

iff M, 0 |= F for all traces M of TS
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Satisfiability

An LTL formula F is satisfiable

iff there exists a transition system TS and a path π such that π |= F

iff there exists a LTL structures M and n ≥ 0 such that M, n |= F

Such a TS/structure is called a model of F .

In verification, satisfiability can be used to detect contradictory properties,

i.e., properties that are satisfied by no computation of any reactive system.

Example: The following property is contradictory (unsatisfiable):

p ∧ ✷(p → ©p) ∧✸¬p
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Satisfiability

When using LTL for verification, we are usually interested in whether a

formula holds at point 0 of an LTL structure.

Lemma. Every satisfiable LTL formula F has a model M with M, 0 |= F .

Proof (Sketch)

Let M, n |= F , and let M′ be the model obtained from M by dropping all

time points 0, ..., n − 1. Thus, time point n in M is time point 0 in M′.

It is easy to prove by induction on the structure of G that, for all LTL

formulas G and i ≥ 0, we have M′, i |= G iff M, n + i |= G .

It follows that M′, 0 |= F .
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Semantics: Variants

Sometimes in the literature the models are of the form:

TS = (S ,→, Si , L), where Si is a set of initial states.

Then:

TS |= F iff π |= F for all initial paths π

iff s |= F for all initial states s of TS
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Satisfiability

LTL satisfiability can be decided using automata on infinite words

(Büchi automata).
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Model checking

The LTL model checking problem is as follows: given a transition system

TS = (S ,→, Si , L) and an LTL formula F , check whether TS |= F .
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Model checking

The LTL model checking problem is as follows: given a transition system

TS = (S ,→, Si , L) and an LTL formula F , check whether TS |= F .

Recall: this is the case iff

• all initial paths π of TS satisfy π |= F , iff

• for all initial states s of TS we have: s |= F .

Example:

The following transition system satisfies ✷(q → ©©©p).

It does not satisfy ✷(p → pUq).

q q
p

p

p
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Connection to First-Order Logic

Another characterization of temporal properties that can be expressed in

LTL is obtained by relating LTL to the monadic first-order theory of the

natural numbers.

Let FO< denote the following first-order language:

• no function symbols and constants;

• binary predicate symbols: “suc” for successor, an order predicate <,

and equality;

• countably infinite supply of unary predicates.
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Connection to First-Order Logic

We may interpret formulas of FO< on LTL structures:

• quantification is over N,

• the binary predicates are interpreted in the obvious way, and

• the unary predicates are identified with propositional variables.

28



Connection to First-Order Logic

We write φ(x1, ..., xn) to indicate that the variables in the FO< formula φ

are x1, ..., xn.

For an FO< formula φ(x1, ..., xn), an LTL structure M, and n1, ..., nk ∈ N,

we write M |= φ[n1, ..., nk ] if φ is true in M with variable xi bound to value

ni , for 1 ≤ i ≤ k.

Examples:

• For φ(x1, x2) = ¬p(x1) ∧ p(x2) ∧

A

x3.(x1 < x3 → ¬q(x3)), we have

∅{p} . . . {p} . . . |= φ[0, 1].

• The following formula φ(x) expresses that there exists a future point that agrees

with the current point (identified by the free variable) on the unary predicates

p1, ..., pn:

φ(x) =

E

y(x < y ∧
∧

1≤i≤n

(pi (x) ↔ pi (y)))
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Connection to First-Order Logic

We say that an FO< formula φ(x) with exactly one free variable is equivalent to an

LTL formula F if for all LTL models M and n ∈ N we have

M, n |= F iff M |= φ[n].

Theorem: For every LTL formula F , there exists an equivalent FO< formula.

Proof The following translation µ : FLTL → FO< takes LTL formulas F to equivalent

FO< formulae:

µ(⊤) = ⊤; µ(⊥) = ⊥; µ(p)(x) = p(x) for every propositional variable p

µ(¬F )(x) = ¬µ(F )(x)

µ(F ∧ G)(x) = µ(F )(x) ∧ µ(G)(x)

µ(©F )(x) =

E

y(suc(x , y) ∧ µ(F )(y))

µ(FUG)(x) =

E

y(x ≤ y ∧ µ(G)(y) ∧

A

z(x ≤ z < y → µ(F )(z)))

In the last two cases, variables y and z are newly introduced for every translation step.
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Connection to First-Order Logic

What about the converse?

In general, are there FO< formulas φ(x) for which there is no equivalent

LTL formula?
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Connection to First-Order Logic

What about the converse?

In general, are there FO< formulas φ(x) for which there is no equivalent

LTL formula?

Obviously there are: the formula

E

y(y < x) states that there exists a

previous time point – which cannot be expressed using only the future

operators of LTL.

When we want to compare FO< with LTL, we should extend the latter with

past-time temporal operators ©− and S.

M, n |= ©−F iff n > 0 and M, n − 1 |= F

M, n |= FSG iff

E

m ≤ n : M,m |= G and M, k |= F for all

k ∈ {m + 1, ..., n}
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Connection to First-Order Logic

This variant of LTL is called LTL with past operators (LTLP).
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Connection to First-Order Logic

This variant of LTL is called LTL with past operators (LTLP).

Theorem (Kamp) For every FO< formula with one free variable, there

exists an equivalent LTLP formula.

Proof. Out of the scope of this lecture.
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Branching Time Logic: CTL

When doing model checking, we effectively use LTL in a branching time

environment:

Every state in a transition system that has more than a single

successor gives rise to a “branching” in time.

This is reflected by the fact that usually, a transition system has more than

a single computation.

Branching time logics allow us to explicitly talk about such branches in

time.
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CTL: Syntax

The class of computational tree logic (CTL) formulas is the smallest set

such that

• ⊤,⊥ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are

A© F and E © F ,

A(FUG) and E(FUG).

The symbols A and E are called path quantifiers.
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Abbreviations

Apart from the Boolean abbreviations, we use:

A✸F for A(⊤UF )

E✸F for E(⊤UF )

A✷F for ¬E✸¬F

E✷F for ¬A✸¬F

Note that formulas such as E(✷q ∧✸p) are not CTL formulas.
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CTL: Semantics

Let T = (S ,→,L) be a transition system. We define satisfaction of CTL

formulas in T at states s ∈ S as follows:

(T , s) |= p iff p ∈ L(s)

(T , s) |= ¬F iff (T , s) |= F is not the case

(T , s) |= F ∧ G iff (T , s) |= F and (T , s) |= G

(T , s) |= F ∨ G iff (T , s) |= F or (T , s) |= G

(T , s) |= E © F iff (T , t) |= F for some t ∈ S with s → t

(T , s) |= A © F iff (T , t) |= F for all t ∈ S with s → t

(T , s) |= A(FUG) iff for all computations π = s0s1 . . . of T with s0 = s,

there is an m ≥ 0 such that (T , sm) |= G and

(T , sk ) |= F for all k < m

(T , s) |= E(FUG) iff there exists a computation π = s0s1 . . . of T with s0 = s,

such that there is an m ≥ 0 such that (T , sm) |= G and

(T , sk ) |= F for all k < m
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