
Formal Specification and Verification

Temporal logic (Part 4)

17.01.2017

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Branching Time Logic: CTL

When doing model checking, we effectively use LTL in a branching time

environment:

Every state in a transition system that has more than a single

successor gives rise to a “branching” in time.

This is reflected by the fact that usually, a transition system has more than

a single computation.

Branching time logics allow us to explicitly talk about such branches in

time.

2

CTL: Syntax

The class of computational tree logic (CTL) formulas is the smallest set

such that

• ⊤,⊥ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are

A© F and E © F ,

A(FUG) and E(FUG).

The symbols A and E are called path quantifiers.

3

Abbreviations

Apart from the Boolean abbreviations, we use:

A✸F for A(⊤UF)

E✸F for E(⊤UF)

A✷F for ¬E✸¬F

E✷F for ¬A✸¬F

Note that formulas such as E(✷q ∧✸p) are not CTL formulas.

4

CTL: Semantics

Let T = (S ,→,L) be a transition system. We define satisfaction of CTL

formulas in T at states s ∈ S as follows:

(T , s) |= p iff p ∈ L(s)

(T , s) |= ¬F iff (T , s) |= F is not the case

(T , s) |= F ∧ G iff (T , s) |= F and (T , s) |= G

(T , s) |= F ∨ G iff (T , s) |= F or (T , s) |= G

(T , s) |= E © F iff (T , t) |= F for some t ∈ S with s → t

(T , s) |= A © F iff (T , t) |= F for all t ∈ S with s → t

(T , s) |= A(FUG) iff for all computations π = s0s1 . . . of T with s0 = s,

there is an m ≥ 0 such that (T , sm) |= G and

(T , sk) |= F for all k < m

(T , s) |= E(FUG) iff there exists a computation π = s0s1 . . . of T with s0 = s,

such that there is an m ≥ 0 such that (T , sm) |= G and

(T , sk) |= F for all k < m

5

Example of formulae in CTL

• E✸((A = 2) ∧ (B = 2))

It is possible to reach a state where both processes are in the critical

section.

• A✷(enabled1 ∧ . . . enabledk)

freedom from deadlocks (a safety property);

• A✷(req → A✸grant)

every request will eventually be acknowledged (a liveness property);

• A✷(A✸enabledi)

process i is enabled infinitely often on every computation path

(unconditional fairness)

• A✷(E✸Restart)

from every state it is possible to get to a restart state

6

Equivalence

We say that two CTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all CTL structures T = (S ,→,L) and s ∈ S , we have

T , s |= F iff T , s |= G .

7

Equivalence

We say that two CTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all CTL structures T = (S ,→,L) and s ∈ S , we have

T , s |= F iff T , s |= G .

Examples:

¬A✸F ≡ E✷¬F

¬E✸F ≡ A✷¬F

¬A© F ≡ E ©¬F

A✸F ≡ A[⊤UF]

E✸F ≡ E [⊤UF]

8

CTL

Why is CTL called a tree logic?

Intuitively, it can talk about branching paths (which exists in a tree), but

not about joining path (which do not exist in a tree).

9

CTL

Why is CTL called a tree logic?

Intuitively, it can talk about branching paths (which exists in a tree), but

not about joining path (which do not exist in a

Let T = (S ,→,L) be a transition system.

We define a tree-shaped transition systems Tree(T) = (S′,→′, L′) as
follows:

• S′ is the set of all finite computations of T , i.e.,

S′ = {s0 . . . sk | si → si+1 for all i < k};

• →′= {(π,π′) ∈ S′ × S′ | π = qs, π′ = πs′ for some s, s′ ∈ S with s → s′};

• (P ∈ L′(π) iff P ∈ L(s)) if π = sπ′ for some π
′ ∈ {ǫ} ∪ S′ and s ∈ S.

Tree(T) is called the unravelling of T . Observe that Tree(T) has no leaves because

of the assumption that we have no deadlocks in T .

10

CTL

CTL formulas cannot distinguish between a state in a Kripke structure and

the corresponding states in the tree-shaped unravelling.

Lemma Let T be a transition system, s a state of T , π = s0 . . . sk a state

of Tree(T) such that sk = s, and F a CTL formula.

Then (T , s) |= F iff (Tree(T),π) |= F .

Proof. By induction on the structure of F .

11

CTL∗

CTL∗ is a logic which combines the expressive powers of LTL and CTL, by

dropping the CTL constraint that every temporal operator (©,U ,✷,✸) has

to be associated with a unique path quantifier (A,E).

12

CTL vs LTL

We want to compare the expressive power of LTL and CTL.

To do this, we give a branching time reading to LTL formulas that is

inspired by our interpretation of LTL formulas in model checking:

we view LTL formulas as implicitly universally quantified.

(in LTL we consider all paths)

LTL formula F 7→ CTL∗ formula AF

CTL is also a subset of CTL∗, since it is the fragment of CTL∗ in which

path quantifiers can only be applied to formulae starting with ©,U ,✷,✸.

13

CTL vs LTL

Definition. We call two CTL∗ formulas F and G equivalent if, for all transition systems

T and states s of T , we have (T , s) |= F iff (T , s) |= G .

14

CTL vs LTL

Definition. We call two CTL∗ formulas F and G equivalent if, for all transition systems

T and states s of T , we have (T , s) |= F iff (T , s) |= G .

Some (but not all) LTL formulas can be converted into CTL formulas by adding an A

to each temporal operator.

Theorem. There exists formulae in LTL which cannot be expressed in CTL and

vice-versa.

• In CTL but not in LTL: A✷E✸F

This expresses: wherever we have got to, we can always get to a state in which

F is true.

This is also useful, e.g., in finding deadlocks in protocols.

• In LTL but not in CTL: A[✷✸p → ✸q]

“If there are infinitely many p along the path, then there is an occurrence of q.”

This is an interesting thing to be able to say; for example, many fairness

constraints are of the form “infinitely often requested implies eventually

acknowledged”.

15

Model Checking

The CTL model checking problem is as follows:

Given a transition system T = (S ,→, L) and a CTL formula F ,

check whether T satifies F , i.e., whether (T , s) |= F for all s ∈ S .

16

Model Checking

The CTL model checking problem is as follows:

Given a transition system T = (S ,→, L) and a CTL formula F ,

check whether T satifies F , i.e., whether (T , s) |= F for all s ∈ S .

Method (Idea)

(1) Arrange all subformulas Fi of F in a sequence F0, . . .Fk in ascending

order w.r.t. formula length: for 1 ≤ i < j ≤ k, Fi is not longer than Fj ;

(2) For all subformulas Fi of F , compute the set

sat(Fi) := {s ∈ S |(T , s) |= Fi}

in this order (from shorter to longer formulae);

(3) Check whether S ⊆ sat(F).

17

Model Checking

How to compute sat(Fi)

• p ∈ Π 7→ sat(p) = {s | L(p, s) = 1}

• sat(¬F) = S\sat(F)

• sat(F ∧ G) = sat(F) ∩ sat(G)

• sat(F ∨ G) = sat(F) ∪ sat(G)

• sat(E © F) = {s |

E

t ∈ S : (s → t) ∧ t ∈ sat(F)}

• sat(A© F) = {s |

A

t ∈ S : (s → t) implies t ∈ sat(F)}

• sat(E(FUG)) and sat(A(FUG) are computed as explained in what

follows.

18

Model Checking

Lemma. sat(E(FUG)) is the smallest set T with

(1) sat(G) ⊆ T

(2) s ∈ sat(F) and Post(s) ∩ T 6= ∅ implies s ∈ T

Proof: 1. Show that T = sat(E(FUG)) satisfies (1) and (2).

This follows from the fact that

E(FUG) = G ∨ (F ∧ E © E(FUG)).

(1) sat(G) ⊆ T

(2) s ∈ sat(F) and Post(s) ∩ T 6= ∅ implies s ∈ T

19

Model Checking

Lemma. sat(E(FUG)) is the smallest set T with

(1) sat(G) ⊆ T

(2) s ∈ sat(F) and Post(s) ∩ T 6= ∅ implies s ∈ T

Proof: 2. Show that for any T satisfying (1) and (2), sat(E(FUG)) ⊆ T

Let s ∈ sat(E(FUG))

Case 1: s ∈ sat(G). Then by (1), s ∈ T .

Case 2: s 6∈ sat(G).

Then there exists a path π = s0 . . . sk . . . with s0 = s such that π |= FUG .

Let n ≥ 0 such that

si |= F for 0 ≤ i ≤ n

sn+1 |= G .

20

Model checking

Proof: 2. Show that for any T satisfying (1) and (2), sat(E(FUG)) ⊆ T

....continued

Then

sn+1 ∈ sat(G) ∈ T ,

sn ∈ sat(F) and sn+1 ∈ Post(sn) ∩ T , so sn ∈ T .

sn−1 ∈ sat(F) and sn ∈ Post(sn−1) ∩ T , so sn−1 ∈ T .

. . .

s0 = s ∈ sat(F) and s1 ∈ Post(s0) ∩ T , so s0 = s ∈ T .

21

Model checking

Remark: E(FUG) is a fixpoint of the equation Φ ≡ G ∨ (F ∧ E © Φ).

Since sat(E(FUG)) is the smallest set T with

(1) sat(G) ⊆ T

(2) s ∈ sat(F) and Post(s) ∩ T 6= ∅ implies s ∈ T

it can be computed iteratively as follows:

T0 := sat(G)

Ti+1 := Ti ∪ {s ∈ sat(F) | Post(s) ∩ Ti 6= ∅}

Then: T0 ⊆ T1 ⊆ · · · ⊆ Tj ⊆ Tj+1 ⊆ · · · ⊆ sat(E(FUG)).

Since S is finite, there exists j such that Tj = Tj+1 =

This Tj will be sat(E(FUG)).

22

