Formal Specification and Verification

Temporal logic (Part 4)
17.01.2017

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Branching Time Logic: CTL

When doing model checking, we effectively use LTL in a branching time
environment:

Every state in a transition system that has more than a single
successor gives rise to a “branching” in time.

This is reflected by the fact that usually, a transition system has more than
a single computation.

Branching time logics allow us to explicitly talk about such branches in
time.

CTL: Syntax

The class of computational tree logic (CTL) formulas is the smallest set
such that

e [, | and each propositional variable P € 1 are formulae;
e if F, G are formulae, then so are FA G, FV G, —F;

e if F, G are formulae, then so are
AOF and E(QO F,
A(FUG) and E(FUG).

The symbols A and E are called path quantifiers.

Abbreviations

Apart from the Boolean abbreviations, we use:
AOF for A(TUF)
ECOF for E(TUF)
AOF for —EO—F
EOF for -AO—-F

Note that formulas such as E(Og A Op) are not CTL formulas.

CTL: Semantics

Let T = (S, —, L) be a transition system. We define satisfaction of CTL
formulas in T at states s € S as follows:

(T.s)Ep
(T,s) = —F
(T,s)EFAG
(T,s)EFVG

(T.s) FEOF
(T.s) FAOF
(T,s) = A(FUG)

(T,s) = E(FUG)

iff
iff
iff
iff
iff
iff
iff

iff

p € L(s)

(T,s) = F is not the case

(T,s)=Fand (T,s) G

(T,s)=For(T,s) =G

(T,t) = F forsome t € S withs — t

(T,t) = F forallt € S withs — t

for all computations m = sps1 ... of T with s = s,
there is an m > 0 such that (T,s;) = G and

(T,sk) = F forall k < m

there exists a computation m = sgs; ... of T with sy = s,
such that there is an m > 0 such that (T,s,) = G and
(T,sk) = F forall k < m

Example of formulae in CTL

EC(A=2)AN (B =2))
It is possible to reach a state where both processes are in the critical

section.

AO(enabled; A ...enabledy)
freedom from deadlocks (a safety property);

AO(req — Adgrant)
every request will eventually be acknowledged (a liveness property);

AO(A<Oenabled;)
process I is enabled infinitely often on every computation path

(unconditional fairness)

AO(E<Restart)
from every state it is possible to get to a restart state

Equivalence

We say that two CTL formulas F and G are (globally) equivalent
(written F = G)
if, for all CTL structures T = (S, —, L) and s € S, we have

T,sE=Fiff T,s =G.

Equivalence

We say that two CTL formulas F and G are (globally) equivalent
(written F = G)
if, for all CTL structures T = (S, —, L) and s € S, we have

T,sEFiff T,s EG.

Examples:

-ACF = EO—-F
-ECF = AO-F
_-AOF=E(O-F
AOF = A[TUF]
EOCF = E[TUF]

CTL

Why is CTL called a tree logic?

Intuitively, it can talk about branching paths (which exists in a tree), but
not about joining path (which do not exist in a tree).

CTL

Why is CTL called a tree logic?

Intuitively, it can talk about branching paths (which exists in a tree), but
not about joining path (which do not exist in a

Let T = (S, —, L) be a transition system.

We define a tree-shaped transition systems Tree(T) = (S/,—’,L’) as
follows:

e S’ is the set of all finite computations of T, i.e.,
S’ = {So...Sk | si — sjy1 forall i < k},

o »/'={(m,n")eS" xS" | m=gqs, ' = ns’ forsome s, s’ € S with s — s’};

e (PecL'(r)iff P L(s)) if T = s’ forsome n’ € {e} US’ and s € S.

Tree(T) is called the unravelling of T. Observe that Tree(T) has no leaves because
of the assumption that we have no deadlocks in T.

10

CTL

CTL formulas cannot distinguish between a state in a Kripke structure and

the corresponding states in the tree-shaped unravelling.

Lemma Let T be a transition system, s a state of T, m = s9...s, a state
of Tree(T) such that s, =s, and F a CTL formula.

Then (T,s) = F iff (Tree(T),) = F.

Proof. By induction on the structure of F.

11

CTL®

CTL* is a logic which combines the expressive powers of LTL and CTL, by
dropping the CTL constraint that every temporal operator (O, U, O, <) has
to be associated with a unique path quantifier (A, E).

12

CTL vs LTL

We want to compare the expressive power of LTL and CTL.

To do this, we give a branching time reading to LTL formulas that is
inspired by our interpretation of LTL formulas in model checking:

we view LTL formulas as implicitly universally quantified.
(in LTL we consider all paths)
LTL formula F — CTL* formula AF

CTL is also a subset of CTL*, since it is the fragment of CTL* in which

path quantifiers can only be applied to formulae starting with O, U/, O, <.

13

CTL vs LTL

Definition. We call two CTL™ formulas F and G equivalent if, for all transition systems
T and states s of T, we have (T,s) = F iff (T,s) = G.

14

CTL vs LTL

Definition. We call two CTL™ formulas F and G equivalent if, for all transition systems
T and states s of T, we have (T,s) = F iff (T,s) = G.

Some (but not all) LTL formulas can be converted into CTL formulas by adding an A
to each temporal operator.

Theorem. There exists formulae in LTL which cannot be expressed in CTL and

vice-versa.

e In CTL but not in LTL: AODEOF

This expresses: wherever we have got to, we can always get to a state in which

F is true.

This is also useful, e.g., in finding deadlocks in protocols.

e In LTL but not in CTL: A[OOp — (]

“If there are infinitely many p along the path, then there is an occurrence of g.”

This is an interesting thing to be able to say; for example, many fairness
constraints are of the form “infinitely often requested implies eventually

acknowledged” .

15

Model Checking

The CTL model checking problem is as follows:

Given a transition system T = (S, —, L) and a CTL formula F,
check whether T satifies F, i.e., whether (T,s) = F forall s € S.

16

Model Checking

The CTL model checking problem is as follows:

Given a transition system T = (S, —, L) and a CTL formula F,
check whether T satifies F, i.e., whether (T,s) = F forall s € S.

Method (Idea)

(1) Arrange all subformulas F; of F in a sequence Fy, ... Fj in ascending
order w.r.t. formula length: for 1 </ < j < k, F; is not longer than F;;

(2) For all subformulas F; of F, compute the set
sat(F;) :=={s e S|(T,s) = Fi}
in this order (from shorter to longer formulae);

(3) Check whether S C sat(F).

17

Model Checking

How to compute sat(F;)

p € N— sat(p) ={s| L(p,s) =1}

sat(—F) = S\sat(F)

sat(F N\ G) = sat(F) N sat(G)

sat(F vV G) = sat(F) U sat(G)
sat(EQF)={s|3teS:(s—>t)At€Esat(F)}
sat(AQOQF)={s|VteS:(s—t)impliest € sat(F)}

sat(E(FUG)) and sat(A(FUG) are computed as explained in what
follows.

18

Model Checking

Lemma. sat(E(FUG)) is the smallest set T with
(1) sat(G) C T
(2) s € sat(F) and Post(s)N'T # () impliess € T

Proof: 1. Show that T = sat(E(FU G)) satisfies (1) and (2).

This follows from the fact that
E(FUG) =GV (FANEQ E(FUG)).
(1) sat(G) C T
(2) s € sat(F) and Post(s) N T # 0 impliess € T

19

Model Checking

Lemma. sat(E(FUG)) is the smallest set T with
(1) sat(G) C T
(2) s € sat(F) and Post(s)N'T # () impliess € T

Proof: 2. Show that for any T satisfying (1) and (2), sat(E(FUG)) C T
Let s € sat(E(FUG))

Case 1: s € sat(G). Then by (1), s e T.

Case 2: s & sat(G).

Then there exists a path m = sp...s¢ ... with s) = s such that 7 = FUG.

Let n > 0 such that
siEFfor0<i<n
Sp+1 IZ G.

20

Model checking

Proof: 2. Show that for any T satisfying (1) and (2), sat(E(FUG)) C T
....continued

Then

Sn+1 € sat(G) € T,

sn € sat(F) and s,41 € Post(s,) N T,sos, € T.

shn—1 € sat(F) and s, € Post(s,—1) N T,sos,—1 € T.

so =s € sat(F) and s; € Post(sp) N T,sosp =s € T.

21

Model checking

Remark: E(FUG) is a fixpoint of the equation ® = GV (FAE (O ®).

Since sat(E(FUG)) is the smallest set T with
(1) sat(G) C T
(2) s € sat(F) and Post(s)N'T # () impliess € T

it can be computed iteratively as follows:

To := sat(G)

Tiv1:= T;U{s € sat(F) | Post(s) N T; # 0}
Then: o C T, C---CT; CTjy1 C--- Csat(E(FUG)).
Since S is finite, there exists j such that T, = T;,; =
This T; will be sat(E(FUG)).

22

