Formal Specification and Verification

Temporal logic (Part 4)

$$
17.01 .2017
$$

Viorica Sofronie-Stokkermans
e-mail: sofronie@uni-koblenz.de

Branching Time Logic: CTL

When doing model checking, we effectively use LTL in a branching time environment:

Every state in a transition system that has more than a single successor gives rise to a "branching" in time.

This is reflected by the fact that usually, a transition system has more than a single computation.

Branching time logics allow us to explicitly talk about such branches in time.

CTL: Syntax

The class of computational tree logic (CTL) formulas is the smallest set such that

- \top, \perp and each propositional variable $P \in \Pi$ are formulae;
- if F, G are formulae, then so are $F \wedge G, F \vee G, \neg F$;
- if F, G are formulae, then so are
$A \bigcirc F$ and $E \bigcirc F$, $A(F \mathcal{U} G)$ and $E(F \mathcal{U} G)$.

The symbols A and E are called path quantifiers.

Abbreviations

Apart from the Boolean abbreviations, we use:
$A \diamond F$ for $A(T \mathcal{U} F)$
$E \diamond F$ for $E(T \mathcal{U} F)$
$A \square F$ for $\neg E \diamond \neg F$
$E \square F$ for $\neg A \diamond \neg F$

Note that formulas such as $E(\square q \wedge \diamond p)$ are not CTL formulas.

CTL: Semantics

Let $T=(S, \rightarrow, L)$ be a transition system. We define satisfaction of CTL formulas in T at states $s \in S$ as follows:

$(T, s) \models p$	iff	$p \in L(s)$
$(T, s) \models \neg F$	iff	$(T, s) \models F$ is not the case
$(T, s) \models F \wedge G$	iff	$(T, s) \models F$ and $(T, s) \models G$
$(T, s) \models F \vee G$	iff	$(T, s) \models F$ or $(T, s) \models G$
$(T, s) \models E \bigcirc F$	iff	$(T, t) \models F$ for some $t \in S$ with $s \rightarrow t$
$(T, s) \models A \bigcirc F$	iff	$(T, t) \models F$ for all $t \in S$ with $s \rightarrow t$
$(T, s) \models A(F \mathcal{U} G)$	iff	\quadfor all computations $\pi=s_{0} s_{1} \ldots$ of T with $s_{0}=s$, $\left(T, s_{k}\right) \models F$ for all $k<m$

$(T, s) \models E(F \mathcal{U} G) \quad$ iff there exists a computation $\pi=s_{0} s_{1} \ldots$ of T with $s_{0}=s$, such that there is an $m \geq 0$ such that $\left(T, s_{m}\right) \models G$ and $\left(T, s_{k}\right) \models F$ for all $k<m$

Example of formulae in CTL

- $E \diamond((A=2) \wedge(B=2))$

It is possible to reach a state where both processes are in the critical section.

- $A \square\left(\right.$ enabled $_{1} \wedge \ldots$ enabled $\left._{k}\right)$
freedom from deadlocks (a safety property);
- $A \square($ req $\rightarrow A \diamond$ grant)
every request will eventually be acknowledged (a liveness property);
- $A \square\left(A \diamond\right.$ enabled $\left._{i}\right)$
process i is enabled infinitely often on every computation path (unconditional fairness)
- $A \square(E \diamond$ Restart $)$
from every state it is possible to get to a restart state

Equivalence

We say that two CTL formulas F and G are (globally) equivalent (written $F \equiv G$)
if, for all CTL structures $T=(S, \rightarrow, L)$ and $s \in S$, we have

$$
T, s \models F \text { iff } T, s \models G .
$$

Equivalence

We say that two CTL formulas F and G are (globally) equivalent (written $F \equiv G$)
if, for all CTL structures $T=(S, \rightarrow, L)$ and $s \in S$, we have

$$
T, s \models F \text { iff } T, s \models G .
$$

Examples:
$\neg A \diamond F \equiv E \square \neg F$
$\neg E \diamond F \equiv A \square \neg F$
$\neg A \bigcirc F \equiv E \bigcirc \neg F$
$A \diamond F \equiv A[T \mathcal{U} F]$
$E \diamond F \equiv E[T \mathcal{U} F]$

CTL

Why is CTL called a tree logic?
Intuitively, it can talk about branching paths (which exists in a tree), but not about joining path (which do not exist in a tree).

CTL

Why is CTL called a tree logic?
Intuitively, it can talk about branching paths (which exists in a tree), but not about joining path (which do not exist in a

Let $T=(S, \rightarrow, L)$ be a transition system.
We define a tree-shaped transition systems $\operatorname{Tree}(T)=\left(S^{\prime}, \rightarrow^{\prime}, L^{\prime}\right)$ as follows:

- S^{\prime} is the set of all finite computations of T, i.e., $S^{\prime}=\left\{s_{0} \ldots s_{k} \mid s_{i} \rightarrow s_{i+1}\right.$ for all $\left.i<k\right\}$;
- $\rightarrow^{\prime}=\left\{\left(\pi, \pi^{\prime}\right) \in S^{\prime} \times S^{\prime} \mid \pi=q s, \pi^{\prime}=\pi s^{\prime}\right.$ for some $s, s^{\prime} \in S$ with $\left.s \rightarrow s^{\prime}\right\}$;
- ($P \in L^{\prime}(\pi)$ iff $\left.P \in L(s)\right)$ if $\pi=s \pi^{\prime}$ for some $\pi^{\prime} \in\{\epsilon\} \cup S^{\prime}$ and $s \in S$.
$\operatorname{Tree}(T)$ is called the unravelling of T. Observe that $\operatorname{Tree}(T)$ has no leaves because of the assumption that we have no deadlocks in T.

CTL

CTL formulas cannot distinguish between a state in a Kripke structure and the corresponding states in the tree-shaped unravelling.

Lemma Let T be a transition system, s a state of $T, \pi=s_{0} \ldots s_{k}$ a state of $\operatorname{Tree}(T)$ such that $s_{k}=s$, and F a CTL formula.

Then $(T, s) \models F \operatorname{iff}(\operatorname{Tree}(T), \pi) \models F$.

Proof. By induction on the structure of F.

CTL*

CTL* is a logic which combines the expressive powers of LTL and CTL, by dropping the CTL constraint that every temporal operator $(\bigcirc, \mathcal{U}, \square, \diamond)$ has to be associated with a unique path quantifier (A, E).

CTL vs LTL

We want to compare the expressive power of LTL and CTL.
To do this, we give a branching time reading to LTL formulas that is inspired by our interpretation of LTL formulas in model checking:
we view LTL formulas as implicitly universally quantified.
(in LTL we consider all paths)
LTL formula $F \mapsto C T L^{*}$ formula $A F$
CTL is also a subset of CTL*, since it is the fragment of CTL* in which path quantifiers can only be applied to formulae starting with $\bigcirc, \mathcal{U}, \square, \diamond$.

CTL vs LTL

Definition. We call two CTL* formulas F and G equivalent if, for all transition systems T and states s of T, we have $(T, s) \models F$ iff $(T, s) \models G$.

CTL vs LTL

Definition. We call two CTL* formulas F and G equivalent if, for all transition systems T and states s of T, we have $(T, s) \models F$ iff $(T, s) \models G$.
Some (but not all) LTL formulas can be converted into CTL formulas by adding an A to each temporal operator.

Theorem. There exists formulae in LTL which cannot be expressed in CTL and vice-versa.

- In CTL but not in LTL: $A \square E \diamond F$

This expresses: wherever we have got to, we can always get to a state in which F is true.

This is also useful, e.g., in finding deadlocks in protocols.

- In LTL but not in CTL: $A[\square \diamond p \rightarrow \diamond q]$
"If there are infinitely many p along the path, then there is an occurrence of q."
This is an interesting thing to be able to say; for example, many fairness constraints are of the form "infinitely often requested implies eventually acknowledged".

Model Checking

The CTL model checking problem is as follows:
Given a transition system $T=(S, \rightarrow, L)$ and a CTL formula F, check whether T satifies F, i.e., whether $(T, s) \models F$ for all $s \in S$.

Model Checking

The CTL model checking problem is as follows:
Given a transition system $T=(S, \rightarrow, L)$ and a CTL formula F, check whether T satifies F, i.e., whether $(T, s) \models F$ for all $s \in S$.

Method (Idea)
(1) Arrange all subformulas F_{i} of F in a sequence $F_{0}, \ldots F_{k}$ in ascending order w.r.t. formula length: for $1 \leq i<j \leq k, F_{i}$ is not longer than F_{j};
(2) For all subformulas F_{i} of F, compute the set

$$
\operatorname{sat}\left(F_{i}\right):=\left\{s \in S \mid(T, s) \models F_{i}\right\}
$$

in this order (from shorter to longer formulae);
(3) Check whether $S \subseteq \operatorname{sat}(F)$.

Model Checking

How to compute $\operatorname{sat}\left(F_{i}\right)$

- $p \in \Pi \mapsto \operatorname{sat}(p)=\{s \mid L(p, s)=1\}$
- $\operatorname{sat}(\neg F)=S \backslash \operatorname{sat}(F)$
- $\operatorname{sat}(F \wedge G)=\operatorname{sat}(F) \cap \operatorname{sat}(G)$
- $\operatorname{sat}(F \vee G)=\operatorname{sat}(F) \cup \operatorname{sat}(G)$
- $\operatorname{sat}(E \bigcirc F)=\{s \mid \exists t \in S:(s \rightarrow t) \wedge t \in \operatorname{sat}(F)\}$
- $\operatorname{sat}(A \bigcirc F)=\{s \mid \forall t \in S:(s \rightarrow t)$ implies $t \in \operatorname{sat}(F)\}$
- $\operatorname{sat}(E(F \mathcal{U} G))$ and $\operatorname{sat}(A(F \mathcal{U} G)$ are computed as explained in what follows.

Model Checking

Lemma. $\operatorname{sat}(E(F \mathcal{U} G))$ is the smallest set T with
(1) $\operatorname{sat}(G) \subseteq T$
(2) $s \in \operatorname{sat}(F)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ implies $s \in T$

Proof: 1. Show that $T=\operatorname{sat}(E(F \mathcal{U} G))$ satisfies (1) and (2).
This follows from the fact that
$E(F \mathcal{U} G)=G \vee(F \wedge E \bigcirc E(F \mathcal{U} G))$.
(1) $\operatorname{sat}(G) \subseteq T$
(2) $s \in \operatorname{sat}(F)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ implies $s \in T$

Model Checking

Lemma. $\operatorname{sat}(E(F \mathcal{U} G))$ is the smallest set T with
(1) $\operatorname{sat}(G) \subseteq T$
(2) $s \in \operatorname{sat}(F)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ implies $s \in T$

Proof: 2. Show that for any T satisfying (1) and (2), $\operatorname{sat}(E(F \mathcal{U} G)) \subseteq T$
Let $s \in \operatorname{sat}(E(F \mathcal{U} G))$
Case $1: s \in \operatorname{sat}(G)$. Then by (1), $s \in T$.
Case 2: $s \notin \operatorname{sat}(G)$.
Then there exists a path $\pi=s_{0} \ldots s_{k} \ldots$ with $s_{0}=s$ such that $\pi \models F \mathcal{U G}$.
Let $n \geq 0$ such that

$$
\begin{aligned}
& s_{i} \models F \text { for } 0 \leq i \leq n \\
& s_{n+1} \models G .
\end{aligned}
$$

Model checking

Proof: 2. Show that for any T satisfying (1) and (2), $\operatorname{sat}(E(F \mathcal{U} G)) \subseteq T$
....continued

Then
$s_{n+1} \in \operatorname{sat}(G) \in T$,
$s_{n} \in \operatorname{sat}(F)$ and $s_{n+1} \in \operatorname{Post}\left(s_{n}\right) \cap T$, so $s_{n} \in T$.
$s_{n-1} \in \operatorname{sat}(F)$ and $s_{n} \in \operatorname{Post}\left(s_{n-1}\right) \cap T$, so $s_{n-1} \in T$.
$s_{0}=s \in \operatorname{sat}(F)$ and $s_{1} \in \operatorname{Post}\left(s_{0}\right) \cap T$, so $s_{0}=s \in T$.

Model checking

Remark: $E(F \mathcal{U} G)$ is a fixpoint of the equation $\Phi \equiv G \vee(F \wedge E \bigcirc \Phi)$.
Since $\operatorname{sat}(E(F \mathcal{U} G))$ is the smallest set T with
(1) $\operatorname{sat}(G) \subseteq T$
(2) $s \in \operatorname{sat}(F)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ implies $s \in T$
it can be computed iteratively as follows:

$$
\begin{aligned}
& T_{0}:=\operatorname{sat}(G) \\
& T_{i+1}:=T_{i} \cup\left\{s \in \operatorname{sat}(F) \mid \operatorname{Post}(s) \cap T_{i} \neq \emptyset\right\}
\end{aligned}
$$

Then: $T_{0} \subseteq T_{1} \subseteq \cdots \subseteq T_{j} \subseteq T_{j+1} \subseteq \cdots \subseteq \operatorname{sat}(E(F \mathcal{U} G))$.
Since S is finite, there exists j such that $T_{j}=T_{j+1}=\ldots$.
This T_{j} will be $\operatorname{sat}(E(F \mathcal{U} G))$.

