Formal Specification and Verification

Temporal logic (Part 4)

17.01.2017

Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de

Branching Time Logic: CTL

When doing model checking, we effectively use LTL in a branching time environment:

Every state in a transition system that has more than a single successor gives rise to a "branching" in time.

This is reflected by the fact that usually, a transition system has more than a single computation.

Branching time logics allow us to explicitly talk about such branches in time.

CTL: Syntax

The class of computational tree logic (CTL) formulas is the smallest set such that

- \top , \perp and each propositional variable $P \in \Pi$ are formulae;
- if F, G are formulae, then so are $F \wedge G, F \vee G, \neg F$;
- if F, G are formulae, then so are $A \bigcirc F$ and $E \bigcirc F$, A(FUG) and E(FUG).

The symbols A and E are called path quantifiers.

Abbreviations

Apart from the Boolean abbreviations, we use:

 $A \Diamond F$ for $A(\top \mathcal{U}F)$

 $E \diamond F$ for $E(\top \mathcal{U}F)$

 $A \Box F$ for $\neg E \diamondsuit \neg F$

 $E \Box F$ for $\neg A \Diamond \neg F$

Note that formulas such as $E(\Box q \land \Diamond p)$ are not CTL formulas.

CTL: Semantics

Let $T = (S, \rightarrow, L)$ be a transition system. We define satisfaction of CTL formulas in T at states $s \in S$ as follows:

 $(T, s) \models p$ iff $p \in L(s)$ $(T, s) \models \neg F$ iff $(T, s) \models F$ is not the case $(T,s) \models F \land G$ iff $(T,s) \models F$ and $(T,s) \models G$ $(T, s) \models F \lor G$ iff $(T, s) \models F$ or $(T, s) \models G$ $(T, s) \models E \bigcirc F$ iff $(T, t) \models F$ for some $t \in S$ with $s \to t$ $(T, s) \models A \bigcirc F$ iff $(T, t) \models F$ for all $t \in S$ with $s \to t$ $(T, s) \models A(FUG)$ for all computations $\pi = s_0 s_1 \dots$ of T with $s_0 = s$, iff there is an $m \geq 0$ such that $(T, s_m) \models G$ and $(T, s_k) \models F$ for all k < m $(T, s) \models E(F\mathcal{U}G)$ iff there exists a computation $\pi = s_0 s_1 \dots$ of T with $s_0 = s$, such that there is an $m \ge 0$ such that $(T, s_m) \models G$ and $(T, s_k) \models F$ for all k < m

Example of formulae in CTL

• $E \diamondsuit ((A = 2) \land (B = 2))$

It is possible to reach a state where both processes are in the critical section.

- A□(enabled₁ ∧ ... enabled_k)
 freedom from deadlocks (a safety property);
- $A\Box(\mathsf{req} \to A \Diamond \mathsf{grant})$

every request will eventually be acknowledged (a liveness property);

• $A\Box(A \diamond enabled_i)$

process *i* is enabled infinitely often on every computation path (unconditional fairness)

• $A \Box (E \Diamond \text{Restart})$

from every state it is possible to get to a restart state

Equivalence

We say that two CTL formulas F and G are (globally) equivalent (written $F \equiv G$) if, for all CTL structures $T = (S, \rightarrow, L)$ and $s \in S$, we have

 $T, s \models F$ iff $T, s \models G$.

Equivalence

We say that two CTL formulas F and G are (globally) equivalent (written $F \equiv G$) if, for all CTL structures $T = (S, \rightarrow, L)$ and $s \in S$, we have

 $T, s \models F$ iff $T, s \models G$.

Examples:

 $\neg A \diamondsuit F \equiv E \Box \neg F$

 $\neg E \diamondsuit F \equiv A \Box \neg F$

 $\neg A \bigcirc F \equiv E \bigcirc \neg F$

 $A \diamondsuit F \equiv A[\top \mathcal{U}F]$

 $E \diamondsuit F \equiv E[\top \mathcal{U}F]$

Why is CTL called a tree logic?

Intuitively, it can talk about branching paths (which exists in a tree), but not about joining path (which do not exist in a tree).

CTL

Why is CTL called a tree logic?

Intuitively, it can talk about branching paths (which exists in a tree), but not about joining path (which do not exist in a

Let $T = (S, \rightarrow, L)$ be a transition system.

We define a tree-shaped transition systems $Tree(T) = (S', \rightarrow', L')$ as follows:

• S' is the set of all finite computations of T, i.e., $S' = \{s_0 \dots s_k \mid s_i \rightarrow s_{i+1} \text{ for all } i < k\};$

• $\rightarrow' = \{(\pi, \pi') \in S' \times S' \mid \pi = qs, \pi' = \pi s' \text{ for some } s, s' \in S \text{ with } s \rightarrow s'\};$

• $(P \in L'(\pi) \text{ iff } P \in L(s)) \text{ if } \pi = s\pi' \text{ for some } \pi' \in \{\epsilon\} \cup S' \text{ and } s \in S.$

Tree(T) is called the unravelling of T. Observe that Tree(T) has no leaves because of the assumption that we have no deadlocks in T.

CTL formulas cannot distinguish between a state in a Kripke structure and the corresponding states in the tree-shaped unravelling.

Lemma Let T be a transition system, s a state of T, $\pi = s_0 \dots s_k$ a state of *Tree*(T) such that $s_k = s$, and F a CTL formula.

Then $(T, s) \models F$ iff $(Tree(T), \pi) \models F$.

Proof. By induction on the structure of F.

CTL* is a logic which combines the expressive powers of LTL and CTL, by dropping the CTL constraint that every temporal operator $(\bigcirc, \mathcal{U}, \Box, \diamondsuit)$ has to be associated with a unique path quantifier (A, E).

CTL vs LTL

We want to compare the expressive power of LTL and CTL.

To do this, we give a branching time reading to LTL formulas that is inspired by our interpretation of LTL formulas in model checking:

we view LTL formulas as implicitly universally quantified.

(in LTL we consider all paths)

LTL formula $F \mapsto CTL^*$ formula AF

CTL is also a subset of CTL^{*}, since it is the fragment of CTL^{*} in which path quantifiers can only be applied to formulae starting with \bigcirc , \mathcal{U} , \Box , \diamondsuit .

Definition. We call two CTL^{*} formulas F and G equivalent if, for all transition systems T and states s of T, we have $(T, s) \models F$ iff $(T, s) \models G$.

CTL vs LTL

Definition. We call two CTL^{*} formulas F and G equivalent if, for all transition systems T and states s of T, we have $(T, s) \models F$ iff $(T, s) \models G$.

Some (but not all) LTL formulas can be converted into CTL formulas by adding an A to each temporal operator.

Theorem. There exists formulae in LTL which cannot be expressed in CTL and vice-versa.

• In CTL but not in LTL: $A \Box E \diamondsuit F$

This expresses: wherever we have got to, we can always get to a state in which F is true.

This is also useful, e.g., in finding deadlocks in protocols.

• In LTL but not in CTL: $A[\Box \Diamond p \rightarrow \Diamond q]$

"If there are infinitely many p along the path, then there is an occurrence of q."

This is an interesting thing to be able to say; for example, many fairness constraints are of the form "infinitely often requested implies eventually acknowledged".

The CTL model checking problem is as follows:

Given a transition system $T = (S, \rightarrow, L)$ and a CTL formula F, check whether T satifies F, i.e., whether $(T, s) \models F$ for all $s \in S$.

The CTL model checking problem is as follows:

Given a transition system $T = (S, \rightarrow, L)$ and a CTL formula F, check whether T satifies F, i.e., whether $(T, s) \models F$ for all $s \in S$.

Method (Idea)

- (1) Arrange all subformulas F_i of F in a sequence $F_0, \ldots F_k$ in ascending order w.r.t. formula length: for $1 \le i < j \le k$, F_i is not longer than F_j ;
- (2) For all subformulas F_i of F, compute the set

$$sat(F_i) := \{s \in S | (T, s) \models F_i\}$$

in this order (from shorter to longer formulae);

(3) Check whether $S \subseteq sat(F)$.

How to compute $sat(F_i)$

- $p \in \Pi \mapsto sat(p) = \{s \mid L(p, s) = 1\}$
- $sat(\neg F) = S \setminus sat(F)$
- $sat(F \land G) = sat(F) \cap sat(G)$
- $sat(F \lor G) = sat(F) \cup sat(G)$
- $sat(E \bigcirc F) = \{s \mid \exists t \in S : (s \rightarrow t) \land t \in sat(F)\}$
- $sat(A \bigcirc F) = \{s \mid \forall t \in S : (s \rightarrow t) \text{ implies } t \in sat(F)\}$
- sat(E(FUG)) and sat(A(FUG) are computed as explained in what follows.

Lemma. sat(E(FUG)) is the smallest set T with

- (1) $sat(G) \subseteq T$
- (2) $s \in sat(F)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$

Proof: 1. Show that T = sat(E(FUG)) satisfies (1) and (2).

This follows from the fact that

$$E(F\mathcal{U}G) = G \vee (F \wedge E \bigcirc E(F\mathcal{U}G)).$$

- (1) $sat(G) \subseteq T$
- (2) $s \in sat(F)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$

Lemma. sat(E(FUG)) is the smallest set T with

- (1) $sat(G) \subseteq T$
- (2) $s \in sat(F)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$

Proof: 2. Show that for any T satisfying (1) and (2), $sat(E(FUG)) \subseteq T$ Let $s \in sat(E(FUG))$ Case 1: $s \in sat(G)$. Then by (1), $s \in T$. Case 2: $s \notin sat(G)$. Then there exists a path $\pi = s_0 \dots s_k \dots$ with $s_0 = s$ such that $\pi \models FUG$.

Proof: 2. Show that for any T satisfying (1) and (2), $sat(E(FUG)) \subseteq T$ continued

Then $s_{n+1} \in sat(G) \in T$, $s_n \in sat(F)$ and $s_{n+1} \in Post(s_n) \cap T$, so $s_n \in T$. $s_{n-1} \in sat(F)$ and $s_n \in Post(s_{n-1}) \cap T$, so $s_{n-1} \in T$. \dots $s_0 = s \in sat(F)$ and $s_1 \in Post(s_0) \cap T$, so $s_0 = s \in T$.

Remark: E(FUG) is a fixpoint of the equation $\Phi \equiv G \lor (F \land E \bigcirc \Phi)$.

Since sat(E(FUG)) is the smallest set T with (1) $sat(G) \subseteq T$ (2) $s \in sat(F)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$

it can be computed iteratively as follows:

 $T_{0} := sat(G)$ $T_{i+1} := T_{i} \cup \{s \in sat(F) \mid Post(s) \cap T_{i} \neq \emptyset\}$ Then: $T_{0} \subseteq T_{1} \subseteq \cdots \subseteq T_{j} \subseteq T_{j+1} \subseteq \cdots \subseteq sat(E(FUG)).$ Since S is finite, there exists j such that $T_{j} = T_{j+1} = \cdots$.
This T_{j} will be sat(E(FUG)).