
Formal Specification and Verification

Temporal logic (Part 5)

24.01.2017

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Model Checking

The CTL model checking problem is as follows:

Given a transition system T = (S ,→, L) and a CTL formula F ,

check whether T satifies F , i.e., whether (T , s) |= F for all s ∈ S .

2

Model Checking

The CTL model checking problem is as follows:

Given a transition system T = (S ,→, L) and a CTL formula F ,

check whether T satifies F , i.e., whether (T , s) |= F for all s ∈ S .

Method (Idea)

(1) Arrange all subformulas Fi of F in a sequence F0, . . .Fk in ascending

order w.r.t. formula length: for 1 ≤ i < j ≤ k, Fi is not longer than Fj ;

(2) For all subformulas Fi of F , compute the set

sat(Fi) := {s ∈ S |(T , s) |= Fi}

in this order (from shorter to longer formulae);

(3) Check whether S ⊆ sat(F).

3

Model Checking

How to compute sat(Fi)

• p ∈ Π 7→ sat(p) = {s | L(p, s) = 1}

• sat(¬F) = S\sat(F)

• sat(F ∧ G) = sat(F) ∩ sat(G)

• sat(F ∨ G) = sat(F) ∪ sat(G)

• sat(E © F) = {s |

E

t ∈ S : (s → t) ∧ t ∈ sat(F)}

• sat(A© F) = {s |

A

t ∈ S : (s → t) implies t ∈ sat(F)}

• sat(E(FUG)) and sat(A(FUG) are computed as explained in what

follows.

4

Model Checking

Lemma. sat(E(FUG)) is the smallest set T with

(1) sat(G) ⊆ T

(2) s ∈ sat(F) and Post(s) ∩ T 6= ∅ implies s ∈ T

Remark: E(FUG) is a fixpoint of the equation Φ ≡ G ∨ (F ∧ E © Φ).

sat(E(FUG)) can be computed iteratively as follows:

T0 := sat(G)

Ti+1 := Ti ∪ {s ∈ sat(F) | Post(s) ∩ Ti 6= ∅}

Then: T0 ⊆ T1 ⊆ · · · ⊆ Tj ⊆ Tj+1 ⊆ · · · ⊆ sat(E(FUG)).

Since S is finite, there exists j such that Tj = Tj+1 =

This Tj will be sat(E(FUG)).

5

Model checking

Remark: sat(A✸F) is the smallest set T with

(1) sat(F) ⊆ T

(2) {s ∈ S |

A

s′(s → s′ implies s′ ∈ T)} ⊆ T .

It can be computed iteratively as follows:

T0 := sat(F)

Ti+1 := Ti ∪ {s ∈ S |

A

s′(s → s′ implies s′ ∈ Ti)} = Ti ∪ pre A(Ti)

Then: T0 ⊆ T1 ⊆ · · · ⊆ Tj ⊆ Tj+1 ⊆ · · · ⊆ sat(A✸F).

Since S is finite, there exists j such that Tj = Tj+1 =

This Tj will be sat(A✸F).

6

Model checking

Remark: sat(E✷F) is the largest set T with

(1) T ⊆ sat(F)

(2) s ∈ T implies Post(s) ∩ T 6= ∅.

It can be computed iteratively as follows:

T0 := sat(F)

Ti+1 := Ti ∩ {s ∈ sat(F) | Post(s) ∩ Ti 6= ∅}

Then: T0 ⊇ T1 ⊇ · · · ⊇ Tj ⊇ Tj+1 ⊇ · · · ⊇ sat(E✷F).

Since S is finite, there exists j such that Tj = Tj+1 =

This Tj will be sat(E✷F).

7

Model checking

Sufficient to have method for computing

sat(E © F), sat(E(FUG)) and (sat(E✷F) or sat(A✸F))

All other formulae starting with path quantifiers can be expressed in terms

of E © F , E(FUG) and E✷F or A✸.

A© F ≡ ¬E ©¬F

A(FUG) ≡ ¬E(¬GU¬F ∧ ¬G)) ∧ ¬E✷¬G

A✸F ≡ ¬E¬✸F ≡ ¬E✷¬F

..

.

8

Algorithm

function SAT(F) /* determines the set of states satisfying F */

begin

case

F = ⊤: return S

F = ⊥: return ∅

F is atomic: return {s ∈ S | F ∈ L(s)}

F = ¬G : return S − SAT (G)

F = G1 ∧ G2: return SAT (G1) ∩ SAT (G2)

F = G1 ∨ G2: return SAT (G1) ∪ SAT (G2)

F = A © F : return SAT (¬E © ¬F)

F = E © F : return SATE©(F)

F = A(FUG): return SAT (¬E(¬GU(¬F ∧ ¬G)) ∧ ¬E✷¬G)

F = E(FUG): return SATEU (F ,G)

F = E✸F : return SAT (E(⊤UF))

F = E✷F : return SAT (¬A✸¬F)

F = A✸F : return SATA✸(F)

F = A✷F : return SAT (¬E(⊤U¬F))

9

Algorithm

The algorithm and its subfunctions use program variables X, Y , V and W

which are sets of states.

The program for SAT handles the easy cases directly and passes more

complicated cases on to special procedures, which in turn might call SAT

recursively on subexpressions.

These special procedures rely on implementations of the functions

pre E(Y) = {s ∈ S | exists s′, (s → s′ and s′ ∈ Y)}

pre A(Y) = {s ∈ S | for all s′, (s → s′ implies s′ ∈ Y)}.

10

Algorithm

function SATE©(F)

begin

X := SAT(F)

Y := pre E(X)

return Y

end

11

Algorithm

function SATEU (F ,G)

begin

W := SAT(F)

X := S

Y := SAT(G)

repeat until X = Y

begin

X := Y

Y := Y ∪ (W ∩ pre E(Y))

end

return Y

end

12

Algorithm

function SATA✸(F)

begin

X := S

Y := SAT(F)

repeat until X = Y

begin

X := Y

Y := Y ∪ pre A(Y)

end

return Y

end

13

The state explosion problem

Although the algorithm is linear in the size of the model, unfortunately the

size of the model is itself more often than not exponential in the number of

variables and the number of components of the system which execute in

parallel.

This means that, for example, adding a boolean variable to your program

will double the complexity of verifying a property of it.

The tendency of state spaces to become very large is known as the

state explosion problem. A lot of research has gone into finding ways of

overcoming it.

14

The state explosion problem

Although the algorithm is linear in the size of the model, unfortunately the

size of the model is itself more often than not exponential in the number of

variables and the number of components of the system which execute in

parallel.

This means that, for example, adding a boolean variable to your program

will double the complexity of verifying a property of it.

The tendency of state spaces to become very large is known as the

state explosion problem. A lot of research has gone into finding ways of

overcoming it, including, e.g. the use of:

• Efficient data structures, called ordered binary decision diagrams

(OBDDs), which represent sets of states instead of individual states.

• Abstraction: one may interpret a model abstractly, uniformly or for a

specific property.

15

OBDDs

We start by showing how sets of states are represented with OBDDs,

together with some of the operations required.

Then, we extend that to the representation of the transition system.

Finally, we show how the remainder of the required operations is

implemented.

16

Representing subsets of the set of states

Let S be a finite set (we forget for the moment that it is a set of states).

The task is to represent the various subsets of S as OBDDs.

Since OBDDs encode boolean functions, we need somehow to code the

elements of S as boolean values.

The way to do this in general is to assign to each element s ∈ S a unique

vector of boolean values (v1, v2, ..., vn), each vi ∈ 0, 1.

Then, we represent a subset T by the boolean function fT which maps

(v1, v2, ..., vn) onto 1 if s ∈ T and maps it onto 0 otherwise.

17

Representing subsets of the set of states

In the case that S is the set of states of a transition system T = (S ,→, L),

there is a natural way of choosing the representation of S as boolean

vectors.

18

Representing subsets of the set of states

In the case that S is the set of states of a transition system T = (S ,→, L),

there is a natural way of choosing the representation of S as boolean

vectors.

The labelling function L : S → P(Π) gives us the encoding. (Fix ordering

on the atoms in Π, say p1, . . . , pn)

s ∈ S 7→ (v1, . . . , vn) ∈ {0, 1}n, where vi =

1 if pi ∈ L(s)

0 if pi 6∈ L(s)

As an OBDD, this state is represented by the OBDD of the boolean

function l1 ∧ l2 ∧ · · · ∧ ln, where li is pi if pi ∈ L(s) and ¬pi otherwise.

19

Representing subsets of the set of states

The set of states {s1, s2, . . . , sm} is represented by the OBDD of the

boolean function

(l11 ∧ l12 ∧ · · · ∧ l1n) ∨ (l21 ∧ l22 ∧ · · · ∧ l2n) ∨ · · · ∨ (lm1 ∧ lm2 ∧ · · · ∧ lmn)

where li1 ∧ li2 ∧ · · · ∧ lin represents state si .

20

Examples

Example (.pdf file) linked separately.

21

OBDDs

In order to justify the claim that the representation of subsets of S as

OBDDs will be suitable for the algorithm presented before, we need to look

at how the operations on subsets which are used in that algorithm can be

implemented in terms of the operations we have defined on OBDDs. The

operations in that algorithm are:

(1) Intersection, union and complementation of subsets.

It is clear that these are represented by the boolean functions ∧,∨ and

¬ respectively.

22

OBDDs

In order to justify the claim that the representation of subsets of S as

OBDDs will be suitable for the algorithm presented before, we need to look

at how the operations on subsets which are used in that algorithm can be

implemented in terms of the operations we have defined on OBDDs. The

operations in that algorithm are:

(1) Intersection, union and complementation of subsets.

(2) The functions

pre E(X) = {s ∈ S | exists s′, (s → s′ and s′ ∈ X)}

pre A(X) = {s ∈ S | for all s′, (s → s′ implies s′ ∈ X)}.

The function pre Etakes a subset X of states and returns the set of

states which can make a transition into X . The function pre Atakes a

set X and returns the set of states which can make a transition only

into X .

23

OBDDs

In order to justify the claim that the representation of subsets of S as

OBDDs will be suitable for the algorithm presented before, we need to look

at how the operations on subsets which are used in that algorithm can be

implemented in terms of the operations we have defined on OBDDs. The

operations in that algorithm are:

(1) Intersection, union and complementation of subsets.

(2) The functions

pre E(X) = {s ∈ S | exists s′, (s → s′ and s′ ∈ X)}

pre A(X) = {s ∈ S | for all s′, (s → s′ implies s′ ∈ X)}.

In order to see how pre E(X), pre A(X) are implemented in terms of OBDDs,

we need first to look at how the transition relation itself is represented.

24

Representing the transition relation

The transition relation → of a model T = (S ,→, L) is a subset of S × S .

We have already seen that subsets of a given finite set may be represented

as OBDDs by considering the characteristic function of a binary encoding.

Just like in the case of subsets of S , the binary encoding is naturally given

by the labelling function L. Since → is a subset of S × S , we need two

copies of the boolean vectors.

25

Representing the transition relation

Thus, the link s → s′ is represented by the pair of Boolean vectors

((v1, . . . , vn), (v
′

1 , . . . , v
′

n)), where

• vi = 1 iff pi ∈ L(s) and

• v ′

i = 1 iff pi ∈ L(s′).

As an OBDD, the link is represented by the OBDD for the boolean function

(l1 ∧ l2 ∧ · · · ∧ ln) ∧ (l′1 ∧ l′2 ∧ · · · ∧ l′n)

and a set of links (for example, the entire relation →) is the OBDD for the

∨ of such formulas.

26

Implementing the functions pre

Eand pre

A

It remains to show how an OBDD for pre E(X) and pre A(X) can be

computed, given OBDDs BX for X and B→ for the transition relation →.

First, we observe that pre Acan be expressed in terms of complementation

and pre E, as follows:

pre A(X) = S\pre E(S\X),

where S\Y = {s ∈ S | s 6∈ Y }.

Therefore, we need only explain how to compute the OBDD for pre E(X) in

terms of BX and B→.

27

Implementing the functions pre

Eand pre

A

We proceed as follows:

1. Rename the variables in BX to their primed versions; call the resulting

OBDD BX ′ .

2. Compute the OBDD for exists(p′, apply(∧,B→,BX ′)) using the apply

and exists algorithms for OBDDs.

28

Synthesising OBDDs

It might be too time consuming to compute the OBDD for the transition

relation by first computing the truth table and then an OBDD which might

not be in its fully reduced form (and hence needs to be reduced).

The key idea and attraction of applying OBDDs to finite systems is therefore

to take a system description in a specialized language and to synthesise the

OBDD directly, without having to go via intermediate representations (such

as binary decision trees or truth tables) which are exponential in size.

The specialized languages should allow us to define the next values of the variables

in terms of their current values – compiled into a set of boolean functions f1, . . . , fn,

where fi defines the next value of pi in terms of the current values of all the variables.

The boolean function representing the transition relation is therefore of the

form
n
∧

i=1

p′i ↔ fi

29

Overview

• Model checking:

Finite transition systems / CTL properties

States are “entities” (no precise description, except for labelling

functions)

No precise description of actions (only → important)

30

Overview

• Model checking:

Finite transition systems / CTL properties

States are “entities” (no precise description, except for labelling

functions)

No precise description of actions (only → important)

Extensions in two possible directions:

• More precise description of the actions/events

- Propositional Dynamic Logic

- Hoare logic

• More precise description of states (and possibly also of actions)

- succinct representation: formulae represent a set of states

- deductive verification

31

