Formal Specification and Verification

Formal specification (2) 29.11.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now

- Logic
- Formal specification (generalities)

Algebraic specification

Formal specification

• Specification languages for describing programs/processes/systems

- Model based specification
 - transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

- algebraic specification
- Declarative specifications
 - logic based languages (Prolog)
 - functional languages, λ -calculus (Scheme, Haskell, OCaml, ...)
 - rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...
- Specification languages for properties of programs/processes/systems Temporal logic

Formal specification

- Specification languages for describing programs/processes/systems
 - Model based specification
 - transition systems, abstract state machines, specifications based on set theory
 - Axiom-based specification
 - algebraic specification
 - Declarative specifications
 - logic based languages (Prolog)
 - functional languages, λ -calculus (Scheme, Haskell, OCaml)
 - rewriting systems (very close to algebraic specification): ELAN, SPIKE
- Specification languages for properties of programs/processes/systems Temporal logic

Algebraic Specification

- "A gentle introduction to CASL"
- M. Bidoit and P. Mosses

http://www.lsv.ens-cachan.fr/~bidoit/GENTLE.pdf

Formal specification

• Specification languages for describing programs/processes/systems

- Model based specification
 - transition systems, abstract state machines, specifications based on set theory
- Axiom-based specification
 - algebraic specification
- Declarative specifications
 - logic based languages (Prolog)
 - functional languages, λ -calculus (Scheme, Haskell, OCaml)
 - rewriting systems (very close to algebraic specification): ELAN, SPIKE
- Specification languages for properties of programs/processes/systems Temporal logic

Transition systems

Transition systems

- Executions
- Modeling data-dependent systems

Transition systems

- Model to describe the behaviour of systems
- Digraphs where nodes represent states, and edges model transitions
- State: Examples
 - the current colour of a traffic light
 - the current values of all program variables + the program counter
 - the current value of the registers together with the values of the input bits
- **Transition** ("state change"): Examples
 - a switch from one colour to another
 - the execution of a program statement
 - the change of the registers and output bits for a new input

Transition systems

Definition.

- A transition system TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where:
 - *S* is a set of states
 - Act is a set of actions
 - $\rightarrow \subseteq S \times Act \times S$ is a transition relation
 - $I \subseteq S$ is a set of initial states
 - AP is a set of atomic propositions
 - $L: S \rightarrow 2^{AP}$ is a labeling function

S and Act are either finite or countably infinite Notation: $s \xrightarrow{\alpha} s'$ instead of $(s, \alpha, s') \in \rightarrow$.

A beverage vending machine

states? actions?, transitions?, initial states?

Direct successors and predecessors

$$Post(s, \alpha) = \{s' \in S \mid s \xrightarrow{\alpha} s'\}, \qquad Post(s) = \bigcup_{\alpha \in Act} Post(s, \alpha)$$
$$Pre(s, \alpha) = \{s' \in S \mid s' \xrightarrow{\alpha} s\}, \qquad Pre(s) = \bigcup_{\alpha \in Act} Pre(s, \alpha)$$
$$Post(C, \alpha) = \bigcup_{s \in C} Post(s, \alpha),$$
$$Post(C) = \bigcup_{\alpha \in Act} Post(C, \alpha) \quad \text{for } C \subseteq S$$
$$Pre(C, \alpha) = \bigcup_{s \in C} Pre(s, \alpha),$$
$$Pre(C) = \bigcup_{\alpha \in Act} Pre(C, \alpha) \quad \text{for } C \subseteq S$$

State s is called terminal if and only if $Post(s) = \emptyset$

Action- and AP-determinism

Definition. Transition system $TS = (S, Act, \rightarrow, I, AP, L)$ is actiondeterministic iff:

 $| I | \leq 1 \text{ and } | Post(s, \alpha) | \leq 1 \text{ for all } s \in S, \alpha \in Act$

(at most one initial state and for every action, a state has at most one successor)

Definition. Transition system $TS = (S, Act, \rightarrow, I, AP, L)$ is *AP*-deterministic iff:

 $\mid I \mid \leq 1 ext{ and } \mid Post(s) \cap \{s' \in S \mid L(s') = A\} \mid \leq 1 ext{ for all } s \in S, A \in 2^{AP}$

(at most one initial state; for state and every $A : AP \rightarrow \{0, 1\}$ there exists at most a successor of *s* in which "satisfies *A*")

Non-determinism

Nondeterminism is a feature!

- to model concurrency by interleaving
 - no assumption about the relative speed of processes
- to model implementation freedom
 - only describes what a system should do, not how
- to model under-specified systems, or abstractions of real systems
 - use incomplete information

Non-determinism

Nondeterminism is a feature!

- to model concurrency by interleaving
 - no assumption about the relative speed of processes
- to model implementation freedom
 - only describes what a system should do, not how
- to model under-specified systems, or abstractions of real systems
 - use incomplete information

In automata theory, nondeterminism may be exponentially more succinct but that's not the issue here!

Transition systems \neq **finite automata**

As opposed to finite automata, in a transition system:

- there are no accept states
- set of states and actions may be countably infinite
- may have infinite branching
- actions may be subject to synchronization
- nondeterminism has a different role

Transition systems are appropriate for modelling reactive system behaviour

Executions

• A finite execution fragment ρ of *TS* is an alternating sequence of states and actions ending with a state:

 $\rho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n$ such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \le i < n$.

• An infinite execution fragment ρ of *TS* is an infinite, alternating sequence of states and actions:

 $\rho = s_0 \alpha_1 s_1 \alpha_2 s_2 \alpha_3 \dots$ such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \leq i$.

- An execution of TS is an initial, maximal execution fragment
 - a maximal execution fragment is either finite ending in a terminal state, or infinite
 - an execution fragment is initial if $s_0 \in I$

Examples of Executions

Examples of Executions

- Execution fragments ρ_1 and ρ are initial, but ρ_2 is not.
- ρ is not maximal as it does not end in a terminal state.
- Assuming that ρ_1 and ρ_2 are infinite, they are maximal

Definition. State $s \in S$ is called reachable in *TS* if there exists an initial, finite execution fragment

$$s_0 \stackrel{\alpha_1}{\rightarrow} s_1 \stackrel{\alpha_2}{\rightarrow} \cdots \stackrel{\alpha_n}{\rightarrow} s_n = s$$

Reach(TS) denotes the set of all reachable states in TS.