
Formal Specification and Verification

Formal specification (2)

29.11.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Until now

• Logic

• Formal specification (generalities)

Algebraic specification

2

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

• Specification languages for properties of programs/processes/systems

Temporal logic

3

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE

• Specification languages for properties of programs/processes/systems

Temporal logic

4

Algebraic Specification

“A gentle introduction to CASL”

M. Bidoit and P. Mosses

http://www.lsv.ens-cachan.fr/∼bidoit/GENTLE.pdf

5

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE

• Specification languages for properties of programs/processes/systems

Temporal logic

6

Transition systems

Transition systems

• Executions

• Modeling data-dependent systems

7

Transition systems

• Model to describe the behaviour of systems

• Digraphs where nodes represent states, and edges model transitions

• State: Examples

– the current colour of a traffic light

– the current values of all program variables + the program counter

– the current value of the registers together with the values of the

input bits

• Transition (“state change”): Examples

– a switch from one colour to another

– the execution of a program statement

– the change of the registers and output bits for a new input

8

Transition systems

Definition.

A transition system TS is a tuple (S ,Act,→, I ,AP, L) where:

• S is a set of states

• Act is a set of actions

• →⊆ S × Act × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s
α

→ s′ instead of (s,α, s′) ∈→.

9

A beverage vending machine

10

Direct successors and predecessors

Post(s,α) = {s′ ∈ S | s
α

→ s′}, Post(s) =
⋃

α∈Act Post(s,α)

Pre(s,α) = {s′ ∈ S | s′
α

→ s}, Pre(s) =
⋃

α∈Act Pre(s,α)

Post(C ,α) =
⋃

s∈C Post(s,α),

Post(C) =
⋃

α∈Act Post(C ,α) for C ⊆ S

Pre(C ,α) =
⋃

s∈C Pre(s,α),

Pre(C) =
⋃

α∈Act Pre(C ,α) for C ⊆ S

State s is called terminal if and only if Post(s) = ∅

11

Action- and AP-determinism

Definition. Transition system TS = (S ,Act,→, I ,AP, L) is action-

deterministic iff:

| I |≤ 1 and | Post(s,α) |≤ 1 for all s ∈ S ,α ∈ Act

(at most one initial state and for every action, a state has at most one

successor)

Definition. Transition system TS = (S ,Act,→, I ,AP, L) is AP-deterministic

iff:

| I |≤ 1 and | Post(s) ∩ {s′ ∈ S | L(s′) = A} |≤ 1 for all

s ∈ S ,A ∈ 2AP

(at most one initial state; for state and every A : AP → {0, 1} there exists

at most a successor of s in which “satisfies A”)

12

Non-determinism

Nondeterminism is a feature!

• to model concurrency by interleaving

- no assumption about the relative speed of processes

• to model implementation freedom

- only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems

- use incomplete information

13

Non-determinism

Nondeterminism is a feature!

• to model concurrency by interleaving

- no assumption about the relative speed of processes

• to model implementation freedom

- only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems

- use incomplete information

In automata theory, nondeterminism may be exponentially more succinct

but that’s not the issue here!

14

Transition systems 6= finite automata

As opposed to finite automata, in a transition system:

• there are no accept states

• set of states and actions may be countably infinite

• may have infinite branching

• actions may be subject to synchronization

• nondeterminism has a different role

Transition systems are appropriate for modelling reactive system behaviour

15

Executions

• A finite execution fragment ρ of TS is an alternating sequence of

states and actions ending with a state:

ρ = s0α1s1α2...αnsn such that si
αi+1
−→ si+1 for all 0 ≤ i < n.

• An infinite execution fragment ρ of TS is an infinite, alternating

sequence of states and actions:

ρ = s0α1s1α2s2α3... such that si
αi+1
−→ si+1 for all 0 ≤ i .

• An execution of TS is an initial, maximal execution fragment

– a maximal execution fragment is either finite ending in a terminal

state, or infinite

– an execution fragment is initial if s0 ∈ I

16

Examples of Executions

ρ1 : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ sprite

sget
→ . . .

ρ2 : select
τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ beer

bget
→ . . .

ρ : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
→ select

τ
→ sprite

17

Examples of Executions

ρ1 : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ sprite

sget
→ . . .

ρ2 : select
τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ beer

bget
→ . . .

ρ : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
→ select

τ
→ sprite

• Execution fragments ρ1 and ρ are initial, but ρ2 is not.

• ρ is not maximal as it does not end in a terminal state.

• Assuming that ρ1 and ρ2 are infinite, they are maximal

18

Reachable states

Definition. State s ∈ S is called reachable in TS if there exists an initial,

finite execution fragment

s0
α1→ s1

α2→ · · ·
αn→ sn = s

Reach(TS) denotes the set of all reachable states in TS .

19

