Formal Specification and Verification

Formal specification (2)

29.11.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now

e Logic
e Formal specification (generalities)

Algebraic specification

Formal specification

e Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory
Axiom-based specification

algebraic specification
Declarative specifications

logic based languages (Prolog)

functional languages, A-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...
e Specification languages for properties of programs/processes/systems

Temporal logic

Formal specification

e Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory
Axiom-based specification

algebraic specification
Declarative specifications

logic based languages (Prolog)

functional languages, A-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE
e Specification languages for properties of programs/processes/systems

Temporal logic

Algebraic Specification

“A gentle introduction to CASL"
M. Bidoit and P. Mosses

http://www.lsv.ens-cachan.fr/~bidoit/GENTLE. pdf

Formal specification

e Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory
Axiom-based specification

algebraic specification
Declarative specifications

logic based languages (Prolog)

functional languages, A-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE
e Specification languages for properties of programs/processes/systems

Temporal logic

Transition systems

Transition systems
e Executions

e Modeling data-dependent systems

Transition systems

Model to describe the behaviour of systems
Digraphs where nodes represent states, and edges model transitions

State: Examples
— the current colour of a traffic light
— the current values of all program variables 4+ the program counter
— the current value of the registers together with the values of the
input bits
Transition (“state change”): Examples
— a switch from one colour to another
— the execution of a program statement

— the change of the registers and output bits for a new input

Transition systems

Definition.
A transition system TS is a tuple (S, Act, —, I, AP, L) where:
e S is a set of states
e Act is a set of actions
o —-C S x Act X S is a transition relation
e /| C S is a set of initial states
e AP is a set of atomic propositions
e L:S — 247 is a labeling function

S and Act are either finite or countably infinite

Notation: s = s’ instead of (s, o, s’) €—-.

A beverage vending machine

pay

get_sprite get_beer
msert_con
— select ——" beer

states? actions? transitions?, initial states?

10

Direct successors and predecessors

Post(s, o) = {s’ € S| s = s'}, Post(s) = | Post (s,)

aEAct
Pre(s,a) = {s’ € S| s’ = s}, Pre(s) = U,ecac Pre(s, @)

Post(C,) = J,c ¢ Post(s,),

Post(C) = | Post(C,a) for CC S

acAct
Pre(C, a) = s c Pre(s, @),
Pre(C) = U cact Pre(C,a) for CCS

State s is called terminal if and only if Post(s) = @

Action- and AP-determinism

Definition. Transition system TS = (S, Act, —, 1, AP, L) is action-

deterministic iff:
| 1 |<1and | Post(s,a) |<1forallseS, ac Act

(at most one initial state and for every action, a state has at most one

SUCCessor)

Definition. Transition system TS = (S, Act, —, I, AP, L) is AP-deterministic
iff:

| 1 |< 1and | Post(s)N{s’ € S| L(s’") = A} |< 1 for all
seS,Ae2A”f

(at most one initial state; for state and every A: AP — {0, 1} there exists
at most a successor of s in which “satisfies A")

12

Non-determinism

Nondeterminism is a feature!

e to model concurrency by interleaving
- no assumption about the relative speed of processes

e to model implementation freedom
- only describes what a system should do, not how

e to model under-specified systems, or abstractions of real systems
- use incomplete information

13

Non-determinism

Nondeterminism is a feature!

e to model concurrency by interleaving
- no assumption about the relative speed of processes

e to model implementation freedom
- only describes what a system should do, not how

e to model under-specified systems, or abstractions of real systems
- use incomplete information

In automata theory, nondeterminism may be exponentially more succinct
but that's not the issue here!

14

Transition systems # finite automata

As opposed to finite automata, in a transition system:
e there are no accept states
e set of states and actions may be countably infinite
e may have infinite branching
e actions may be subject to synchronization

e nondeterminism has a different role

Transition systems are appropriate for modelling reactive system behaviour

15

Executions

e A finite execution fragment p of TS is an alternating sequence of

states and actions ending with a state:
&1 .
P = SoQ1S1Q2...0nSy such that s; — s;1 for all 0 <7 < n.

e An infinite execution fragment p of TS is an infinite, alternating

sequence of states and actions:
&jt1 .
p = Sp1S12s2a3... such that s; — s;1 for all 0 < /.

e An execution of TS is an initial, maximal execution fragment

— a maximal execution fragment is either finite ending in a terminal
state, or infinite

— an execution fragment is initial if sy € [

16

Examples of Executions

coin T ., sget coin T ., sget
pay p1 : pay — select — sprite — pay —— select — sprite —

get_sprite get_beer sget bget

T ., S8 coin T
po : select — sprite — pay —— select — beer —>

msert_comn sget

coin T . coin T .
p : pay —> select — sprite — pay — select — sprite

17

Examples of Executions

coin T ., sget coin T ., sget
pay p1 : pay — select — sprite — pay —— select — sprite —

get_sprite get_beer sget bget

T ., S8 coin T
po : select — sprite — pay —— select — beer —>

msert_comn sget

coin T . coin T .
p : pay —> select — sprite — pay — select — sprite

e Execution fragments p; and p are initial, but p is not.
e p is not maximal as it does not end in a terminal state.

e Assuming that p; and po are infinite, they are maximal

18

Reachable states

Definition. State s € S is called reachable in TS if there exists an initial,

finite execution fragment

Sogslog---a#snzs

Reach(TS) denotes the set of all reachable states in TS.

19

