Formal Specification and Verification

Formal specification (2)

6.12.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now

e Logic
e Formal specification (generalities)
Algebraic specification

Transition systems

Transition systems

Transition systems
e Executions

e Modeling data-dependent systems

Transition systems

Model to describe the behaviour of systems
Digraphs where nodes represent states, and edges model transitions

State: Examples
— the current colour of a traffic light
— the current values of all program variables 4+ the program counter
— the current value of the registers together with the values of the
input bits
Transition (“state change”): Examples
— a switch from one colour to another
— the execution of a program statement

— the change of the registers and output bits for a new input

Transition systems

Definition.
A transition system TS is a tuple (S, Act, —, I, AP, L) where:
e S is a set of states
e Act is a set of actions
o —-C S x Act X S is a transition relation
e /| C S is a set of initial states
e AP is a set of atomic propositions
e L:S — 247 is a labeling function

S and Act are either finite or countably infinite

Notation: s = s’ instead of (s, o, s’) €—-.

Direct successors and predecessors

Post(s, o) = {s’ € S| s = s'}, Post(s) = | Post (s,)

aEAct
Pre(s,a) = {s’ € S| s’ = s}, Pre(s) = U,ecac Pre(s, @)

Post(C,) = J,c ¢ Post(s,),

Post(C) = | Post(C,a) for CC S

acAct
Pre(C, a) = s c Pre(s, @),
Pre(C) = U cact Pre(C,a) for CCS

State s is called terminal if and only if Post(s) = @

Non-determinism

Nondeterminism is a feature!

e to model concurrency by interleaving
- no assumption about the relative speed of processes

e to model implementation freedom
- only describes what a system should do, not how

e to model under-specified systems, or abstractions of real systems
- use incomplete information

Non-determinism

Nondeterminism is a feature!

e to model concurrency by interleaving
- no assumption about the relative speed of processes

e to model implementation freedom
- only describes what a system should do, not how

e to model under-specified systems, or abstractions of real systems
- use incomplete information

In automata theory, nondeterminism may be exponentially more succinct
but that's not the issue here!

Reachable states

Definition. State s € S is called reachable in TS if there exists an initial,

finite execution fragment

Sogslog---a#snzs

Reach(TS) denotes the set of all reachable states in TS.

Detailed description of states

Variables: Predicates

10

Beverage vending machine revisited

“Abstract” transitions:

true:coin true:refill
start s select and start > start
nsprite >0:sget nbeer >0:bget
select s start and select v start

nsprite=0Anbeer=0:ret-coin

select . start
Action Effect on variables
coin
ret-coin
sget nsprite := nsprite — 1
bget nbeer := nbeer — 1
refill nsprite :— max; nbeer := max

Program graph representation

12

Program graph representation

Some preliminaries

e typed variables with a valuation that assigns values in a fixed structure
to variables

- e.g., B(x) =17 and B(y) = —2

e Boolean conditions: set of formulae over Var
- propositional logic formulas whose propositions are of the form
“x e D"
- (-3 < x<B)A(y =green) A (x < 2xx")

e effect of the actions is formalized by means of a mapping:

Effect : Act x Eval(Var) — Eval(Var)

- e.g.,, @« = x := y + 5 and evaluation B(x) = 17 and 8(y) = —2
- Effect(a, B)(x) = B(y) +5 =3,
- Effect(a, B)(y) = B(y) = =2

13

Program graph representation

Program graphs

A program graph PG over set Var of typed variables is a tuple
(Loc, Act, Effect, —, Locy, g0o)
where
e [oc is a set of locations with initial locations Locy C Loc

e Act is a set of actions
e FEffect : Act x Eval(Var) — Eval(Var) is the effect function

o - C Locx(Cond(Var) X Act) X Loc, transition relation

Boolean conditions on Var

e go € Cond(Var) is the initial condition.

Notation: | £% I’ denotes (1, g, o, I) €—.

14

Beverage Vending Machine

Loc = {start, select} with Locy = {start}

Act = {bget, sget, coin, ret-coin, refill }

Var = {nsprite, nbeer} with domain {0, 1, ..., max}

Effect : Act x Eval(Var) — Eval(Var) defined as follows:

Effect(coin, (3) =
Effect(ret-coin, (3)
Effect(sget, 3) =
Effect(bget, 3)
Effect(refill, 3) =

B
5]
B
B

B

nsprite — B(nsprite) — 1]
nbeer — [B(nbeer) — 1]

[nsprite — max, nbeer — max]

go = (nsprite = max N\ nbeer = max)

15

From program graphs to transition systems

e Basic strategy: unfolding
- state = location (current control) / + data valuation (1, 8)

- initial state = initial location + data valuation satisfying
the initial condition gy

e Propositions and labeling
- propositions: “at I" and “x € D" for D C dom(x)
- < I, B > is labeled with “at [" and all conditions that hold in 3.

o /¥ 1 and g holds in B then < I, 8 >3 < I”, Effect(< I, 8 >) >

16

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc, Act, Effect, —, Locy, go)

over set Var of variables is the tuple (S, Act, —, I, AP, L) where:

S = Loc x Eval(Var)

— S X Act X S is defined by the rule:
If 1 <5) and B = g then < I, B >3< I, Effect(< I, 8 >) >

| ={<1,B8>|1€ Locy,B =g0}
AP = Loc U Cond(Var) and

L(<I1,86>)={l} U{g € Cond(Var) | B = g}

17

Transition

systems for program

graphs

refill formny refill
..

18

Generalizations of transition systems

e More detailed description of states: Abstract state machines

e Emphasis on processes and their interdependency: CSP

e Durations: Timed automata

e Continuous evolution + discrete control: Hybrid automata

19

Abstract state machines (ASM)

Purpose
Formalism for modelling/formalising (sequential) algorithms

Not: Computability / complexity analysis

Invented /developed by
Yuri Gurevich, 1988

Old name

Evolving algebras

20

ASMs

Three Postulates

Sequential Time Postulate:

An algorithm can be described by defining a set of states, a subset of initial
states, and a state transformation function

Abstract State Postulate:

States can be described as first-order structures

Bounded Exploration Postulate:

An algorithm explores only finitely many elements in a state to decide what
the next state is. There is a finite number of names (terms) for all these
“Iinteresting” elements in all states.

21

Example: Computing Squares

Initial State
square = 0
count = 0

ASM for computing the square of input

if input < 0 then
Input := - Iinput
else if input > OA count < input then
par
square := square + Iinput
count := count +1

endpar

22

The Sequential Time Postulate

Sequential algorithm

An algorithm is associated with
e a set S of states
e aset /| C S of initial states

e A function7:S5S — S

(the one-step transformation of the algorithm)

Run (computation)

A run (computation) is a sequence Xp, X1, X2 . ..

o Xp€El
® T(X,') = X,'_|_1 for all i 2 0

of states such that

23

Remark

Remark: In this formalism, algorithms are deterministic

7 :S5 — S can be also viewed as a relation R C S x {7} X S with

(s,7,s") € Riff 7(s) = s’

24

The Abstract State Postulate

States are first-order structures where
e all states have the same vocabulary (signature)

e the transformation 7 does not change the base set (universe)

e S and / are closed under isomorphism

e if f is an isomorphism from a state X onto a state Y/, then f is also
an isomorphism from 7(X) onto 7(Y).

25

Example: Trees

Vocabulary

nodes:

strings:
parent:

firstChild:

nextSibling:

label:

C:

unary, boolean:

unary, boolean:
unary:
unary:
unary:
unary:

constant:

the class of nodes
(type/universe)

the class of strings
the parent node
the first child node
the first sibling
node label

the current node

26

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where
e each symbol is assigned an arity n > 0
e symbols can be marked relational (predicates)

e symbols can be marked static (default: dynamic)

27

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where
e each symbol is assigned an arity n > 0
e symbols can be marked relational (predicates)

e symbols can be marked static (default: dynamic)

Remark: This is not a restriction
e predicates with arity n can be regarded as functions with arity
S...s — bool
where s is the usual sort (for terms) and bool is a different sort
e The sort bool is described using a unary predicate Bool
e The sort Bool contains all formulae, in particular also T, L (“relational

constants”)

28

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where
e each symbol is assigned an arity n > 0
e symbols can be marked relational (predicates)
e symbols can be marked static (default: dynamic)
Each signature contains
e the constant undef (“undefined”)
e the relational constants T (true), L (false)
e the unary relational symbols Boole, —
e the binary relational symbols A, V, —, <>, =

These special symbols are all static

29

Vocabulary (Signature)

Signatures: A signature is a finite set of function/predicate symbols, where
e each symbol is assighed an arity n > 0
e symbols can be marked static (default: dynamic)
Each signature contains
e the constant undef (“undefined”)
e the relational constants true, false
e the unary relational symbols Boole, —
e the binary relational symbols A, V, —, <>, &

These special symbols are all static

There is an infinite set of variables
Terms are built as usual from variables and function symbols
Formulae are built as usual

30

First-order Structures (States)

First-order structures (states) consist of

e a non-empty universe (called BaseSet)

e an interpretation of the symbols in the signature

Restrictions on states

0,1, undef € BaseSet (different)

L4=0 T4=1

undef 4 = undef

If f relational then f, : BaseSet — {0,1}
Boole 4 = {0, 1}

-, V, A\, =, <> are interpreted as usual

31

The reserve of a state

Reserve: Consists of the elements that are “unknown” in a state

The reserve of a state must be infinite

32

Extended States

Variable assignment
A function 3 : Var — BaseSet
(boolean variables are assigned 0 or 1)

Extended state

A pair (A, B8) consisting of a state .A and a variable assignment 3.

33

Extended States

Variable assignment
A function 3 : Var — BaseSet
(boolean variables are assigned 0 or 1)

Extended state

A pair (A, B8) consisting of a state .A and a variable assignment 3.

Evaluation of terms and formulae: as usual

34

Example: Trees

Vocabulary

nodes:

strings:
parent:

firstChild:

nextSibling:

label:

C:

unary, boolean:

unary, boolean:
unary:
unary:
unary:
unary:

constant:

the class of nodes
(type/universe)

the class of strings
the parent node
the first child node
the first sibling
node label

the current node

35

Example: Trees

Terms

parent(parent(c))

label(firstChild(c))

parent(firstChild(c)) = ¢

nodes(x) — parent(x) = parent(nextSibling(x))

(x is a variable)

(Boolean, formula)

36

Isomorphism

Lemma (Isomorphism)

Isomorphic states (structures) are indistinguishable by ground terms:

Justification for postulate

Algorithm must have the same behaviour for indistinguishable states

Isomorphic states are different representations of the same abstract state!

37

State updates

Locations. A location is a pair (f,a) with
e f an n-ary function symbol
e a € BaseSet” an n-tuple

Examples

(parent, a), (firstChild, a), (nextSibling, a), (c,)

38

State updates

Locations. A location is a pair (f,a) with
e f an n-ary function symbol
e 3 € BaseSet” an n-tuple

Examples

(parent, a), (firstChild, a), (nextSibling, a), (c,)

An update is a triple (f, a, b) with
e (f,3a) a location
e f not static
e b € BaseSet
e if f is relational, then b € {0, 1}

39

State updates

Locations. A location is a pair (f,a) with
e f an n-ary function symbol
e a € BaseSet” an n-tuple

Examples

(parent, a), (firstChild, a), (nextSibling, a), (c,)

An update is a triple (f, a, b) with

e (f,3) a location

_ Intended meaning:
e f not static
f is changed by changing f(3a) to b.

e b € BaseSet

e if f is relational, then b € {0,1}

40

State updates

Locations. A location is a pair (f,3a) with
e f an n-ary function symbol
e 3 € BaseSet” an n-tuple

Examples

(parent, a), (firstChild, a), (nextSibling, a), (c,)

An update is a triple (f, a, b) with

e (f,3) a location Intended meaning:
e f not static f is changed by changing f(a) to b.

e b c BaseSet

e if f is relational, then b € {tt, ff} An update is trivial if f4(3) = b

41

Generalizations of transition systems

e More detailed description of states: Abstract state machines

e Emphasis on processes and their interdependency: CSP

e Durations: Timed automata

e Continuous evolution + discrete control: Hybrid automata

42

Timed automata

e transition systems + timing constraints

43

Timed automata

A timed automaton is a finite automaton extended with a finite set of
real-valued clocks. During a run of a timed automaton, clock values increase
all with the same speed. Along the transitions of the automaton, clock
values can be compared to integers. These comparisons form guards that
may enable or disable transitions and by doing so constrain the possible
behaviors of the automaton. Further, clocks can be reset.

44

Timed automata

A timed automaton is a finite automaton extended with a finite set of
real-valued clocks. During a run of a timed automaton, clock values increase
all with the same speed. Along the transitions of the automaton, clock
values can be compared to integers. These comparisons form guards that
may enable or disable transitions and by doing so constrain the possible
behaviors of the automaton. Further, clocks can be reset.

Timed automata can be used to model and analyse the timing behavior of
computer systems, e.g., real-time systems or networks.

45

Timed automata

Example: Simple Light Control

Press

o T

Press Press

Off > -

Press

WANT: if press is issued twice quickly then the light will get brighter;
otherwise the light is turned off.

46

Timed automata

Example: Simple Light Control

Press
Press x:=0/ Press
Off Light
X<=3
x=>3
Press

Solution: Add a real-valued clock x

Adding continuous variables to transition systems

47

Timed automata: Syntax

A finite set Loc of locations

A subset Locy C Loc of initial locations

A finite set Act of labels (alphabet, actions)

A finite set X of clocks

Invariant Inv(/) for each location | € Loc: (clock constraint over X)

A finite set E of edges. Each edge has:

source location /, target location //
label a € Act (empty labels also allowed)
guard g (a clock constraint over X)

a subset X’ of clocks to be reset

48

Timed automata: Semantics

For a timed automaton
A = (Loc, Locy, Act, X, {Inv;};ci0c, E)

define an infinite state transition system S(A):

e States S: a state s is a pair (/, v), where
| is a location, and

v is a clock vector, mapping clocks in X to R, satisfying Inv(/)
e Initial States: (/, v) is initial state if / is in Locy and v(x) =0

e Elapse of time transitions: for each nonnegative real number d,
(I,v) % (I, v + d) if both v and v + d satisfy Inv(/)

e Location switch transitions: (/,v) = (/’,v’) if there is an edge

(I,a,g,X’, I") such that v satisfies g and v/ = v[{x— 0| x € X’}].

49

Timed automata

Example: Simple Light Control

Press

Press

~Brigh

X<=3

Press

Timed automaton:
Loc = {Off, Light, Bright}, Locg = {Off}, Act = {Press}
X = {x}; Inv(Off) = Inv(Light) = Inv(Bright) = (x > 0)

Edges: (Off, Press, T, {x}, Light), (Light, Press, x > 3, &, Off)
(Light, Press, x < 3, @, Bright), (Bright, Press, T, &, Off)

50

Timed automata

Example: Simple Light Control

Press

Press

~Brigh

X<=3

Press

States: (Off, v), (Light, v), (Bright, v) (v value of clock x).
Initial state: (Off, 0).

Transitions (Examples)

Elapse of time: (Off, 10) >, (Off, 15)

Location switch: (Off, 10) e (Light, 0)

51

Hybrid Automata

52

Hybrid Automata

Normal T(t) < Tm Heat

dT/dt(t) = -k(T(t)-f(t)) dT/dt(t) = -Kk[T(t) - (h(t)+f(t))]

T(t)>Tm T(t)<TM

T(t)> M

f: R->R evolution of external temperature

h : R->R evolution of heater temperature

53

Hybrid Automata

Hybrid automaton (HA) S = (X, Q, flow, Inv, Init, E, jump) where:

(1) X ={x1,...,xn} finite set of real valued variables

(2)

(3)
(4)
(5)
(6)
(7)

Q finite set of control modes

{flowq | g € Q} specify the continuous dynamics in each control mode
(flowq predicate over {x1,...,xp} U{x1,...,Xn}).

{Invg | ¢ € Q} mode invariants (predicates over X).

{Initg | g € Q} initial states for control modes (predicates over X).
E: control switches (finite multiset with elements in Q X Q).
{guard, | e € E} guards for control switches (predicates over X).

Jump conditions {jump, | e € E}, (predicates over X U X’), where
X' ={x{,...,x}} is a copy of X consisting of “primed” variables.

54

Linear Hybrid Automata

Atomic linear predicate: linear inequality (e.g. 3x1 — x2 + 7x5 < 4).

Convex linear predicate: finite conjunction of linear inequalities.

A state assertion s for S: family {s(q) | g € Q}, where s(q) is a predicate
over X (expressing constraints which hold in state s for mode q).

-

Definition [Henzinger 1997] A linear hybrid automaton (LHA) is a

hybrid automaton which satisfies the following requirements:

(1) Linearity:

- For every g € Q, flowg, Invg, and Inity are convex linear predicates.

- For every e = (q,q’) € E, jump, and guard, are convex linear predicates.
We assume that flowg are conjunctions of non-strict inequalities.

(2) Flow independence:
For every g € Q, flowy is a predicate over X only.

55

Example

Fill

Dump

Inv

Inv,

ﬂow1

flow

Inv ,

Inv 4

flow ,

ﬂow3

React

Filter

Chemical plant

Two substances are mixed; they react;
the resulting product is filtered out;
then the procedure is repeated.

56

Example

Fill

Dump

Inv Inv,
ﬂOW1 fl()W2
Inv , Inv 4
flow , flow ,

React

Filter

Chemical plant

Two substances are mixed; they react;
the resulting product is filtered out;
then the procedure is repeated.

Check:
e No overflow
e Substances in the right proportion
e |f substances in wrong proportion,
tank can be drained in < 200s.

57

Example

Fill

Dump

Inv Inv,
ﬂOW1 fl()W2
Inv , Inv 4
flow , flow ,

React

Filter

Mode 1: Fill Temperature is low, 1 and 2 do not react.
Substances 1 and 2 (possibly mixed with a small quantity of 3)

are filled in the tank in equal quantities up to a margin of error.

Invy x1+x +x3 < Lf A /\?:1X,'ZO A\
—,<x1—x < €; N 0< x3 <min
flow; x1 >dminA xo >dminA x3 =0 A —90,< x1 — xo <9,

If proportion not kept: system jumps into mode 4 (Dump);
If the total quantity of substances exceeds level L (tank filled)

the system jumps into mode 2 (React).

58

Example

I I Mode 2: React Temparature is high. Substances 1 and 2 react.
1 The reaction consumes equal quantities of substances 1 and 2

and produces substance 3.

l Inv; L < x1+ x4+ x3 < Loverflow A /\?:1 xi >0 A
—€; < x1—x0 < €; N 0< x3 < max

flow, x1 < —dminA xo< —dmin A .x3 > dmin

Inv | v,
/N\ X1:X2 /N\ X3 + Xl —+ XQZ 0
Fill ﬂ(lwl flow,] React
Dump (57, nv, Filter If the proportion between substances 1 and 2 is not kept
flow,] flow the system jumps into mode 4 (Dump);

If the total quantity of substances 1 and 2 is below some minimal

level min the system jumps into mode 3 (Filter).

59

Example

Fill

Dump

o =

Inv

Inv,

row1

flow

Inv ,

flow ,

Inv 4

flow3

React

Filter

Mode 3: Filter Temperature is low. Substance 3 is filtered out.

Inv3 x1 + x2 + x3 < Loverflow A /\?:1 xi 20 A
—€; < x1—x < €; AN X3 > min

flows x1=0A x%=0 A x35 —dmin

If proportion not kept: system jumps into mode 4 (Dump);
Otherwise, if the concentration of substance 3 is below some

minimal level min the system jumps into mode 1 (Fill).

60

Example

I I Mode 4: Dump The content of the tank is emptied.

For simplicity we assume that this happens instantaneously:

P
h

Invg : /\,3:1 x; = 0 and flowy : /\,3:1 x;= 0.

Inv | Inv,
.. |flow
Fill ‘1 L1eX%7 React
Dump Inv Inv 5 Filter
=]
flow , flow ,

Remark

The material on ASMs is not required for the exam (only the general idea)

The definitions of timed automata and hybrid automata are required for the
exam.

62

