
Formal Specification and Verification

Formal specification (3)

13.12.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1



Exam

1) 20.02.2017–24.02.2017 (first week after end of lectures)

27.02.2017–3.03.2017 (second week after end of lectures)

(Attention: 27.02: Rosenmontag)

6.03.2017–10.03.2017 (third week after end of lectures)

2) Before start of the lectures of the Sommersemester (18.04.2017)

Doodle poll soon.

2



Until now

Transition systems and program graphs

Generalizations of transition systems

• More detailed description of states: Abstract state machines

• Emphasis on processes and their interdependency: CSP

• Durations: Timed automata

• Continuous evolution + discrete control: Hybrid automata

3



Hybrid Automata

4



Hybrid Automata

  

Normal HeatT(t) < Tm

T(t) > TM

f : R −> R  evolution of external temperature

h : R −> R  evolution of heater temperature

dT/dt(t) = −k(T(t)−f(t))

T(t) > Tm

dT/dt(t) = −k[T(t) − (h(t)+f(t))]

T(t) < TM

5



Hybrid Automata

Hybrid automaton (HA) S = (X ,Q, flow, Inv, Init,E , jump) where:

(1) X = {x1, . . . , xn} finite set of real valued variables

Q finite set of control modes

(2) {flowq | q ∈ Q} specify the continuous dynamics in each control mode

(flowq predicate over {x1, . . . , xn} ∪ {
.
x1, . . . ,

.
xn}).

(3) {Invq | q ∈ Q} mode invariants (predicates over X ).

(4) {Initq | q ∈ Q} initial states for control modes (predicates over X ).

(5) E : control switches (finite multiset with elements in Q × Q).

(6) {guarde | e ∈ E} guards for control switches (predicates over X ).

(7) Jump conditions {jumpe | e ∈ E}, (predicates over X ∪ X ′), where

X ′ = {x′1, . . . , x
′

n} is a copy of X consisting of “primed” variables.

6



Linear Hybrid Automata

Atomic linear predicate: linear inequality (e.g. 3x1 − x2 + 7x5 ≤ 4).

Convex linear predicate: finite conjunction of linear inequalities.

A state assertion s for S : family {s(q) | q ∈ Q}, where s(q) is a predicate

over X (expressing constraints which hold in state s for mode q).

Definition [Henzinger 1997] A linear hybrid automaton (LHA) is a

hybrid automaton which satisfies the following requirements:

(1) Linearity:

- For every q ∈ Q, flowq , Invq , and Initq are convex linear predicates.

- For every e = (q, q′) ∈ E , jumpe and guarde are convex linear predicates.

We assume that flowq are conjunctions of non-strict inequalities.

(2) Flow independence:

For every q ∈ Q, flowq is a predicate over
.
X only.

7



Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Chemical plant

Two substances are mixed; they react;

the resulting product is filtered out;

then the procedure is repeated.

8



Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Chemical plant

Two substances are mixed; they react;

the resulting product is filtered out;

then the procedure is repeated.

Check:

• No overflow

• Substances in the right proportion

• If substances in wrong proportion,

tank can be drained in ≤ 200s.

9



Example

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Mode 1: Fill Temperature is low, 1 and 2 do not react.

Substances 1 and 2 (possibly mixed with a small quantity of 3)

are filled in the tank in equal quantities up to a margin of error.

Inv1 x1 + x2 + x3 ≤ Lf ∧
∧3

i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ min

flow1
.
x1 ≥dmin∧

.
x2 ≥dmin∧

.
x3 =0 ∧ −δa≤

.
x1 −

.
x2 ≤δa

If proportion not kept: system jumps into mode 4 (Dump);

If the total quantity of substances exceeds level Lf (tank filled)

the system jumps into mode 2 (React).

10



Example

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Mode 2: React Temparature is high. Substances 1 and 2 react.

The reaction consumes equal quantities of substances 1 and 2

and produces substance 3.

Inv2 Lf ≤ x1 + x2 + x3 ≤ Loverflow ∧
∧3

i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ max

flow2
.
x1≤ −dmin∧

.
x2≤ −dmin∧

.
x3≥ dmin

∧
.
x1=

.
x2 ∧

.
x3 +

.
x1 +

.
x2= 0

If the proportion between substances 1 and 2 is not kept

the system jumps into mode 4 (Dump);

If the total quantity of substances 1 and 2 is below some minimal

level min the system jumps into mode 3 (Filter).

11



Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Inv

flow

Mode 3: Filter Temperature is low. Substance 3 is filtered out.

Inv3 x1 + x2 + x3 ≤ Loverflow ∧
∧3

i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ x3 ≥ min

flow3
.
x1= 0∧

.
x2= 0 ∧

.
x3≤ −dmin

If proportion not kept: system jumps into mode 4 (Dump);

Otherwise, if the concentration of substance 3 is below some

minimal level min the system jumps into mode 1 (Fill).

12



Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Mode 4: Dump The content of the tank is emptied.

For simplicity we assume that this happens instantaneously:

Inv4 :
∧3

i=1 xi = 0 and flow4 :
∧3

i=1

.
xi= 0.

13



Remark

The material on ASMs is not required for the exam (only the general idea)

The definitions of timed automata and hybrid automata are required for the

exam.

14



More complex specifications and specification

languages

• Languages for describing various processes

• Languages based on Set theory (OZ, B)

• Languages for describing durations

• Complex languages

15



More complex specifications and specification

languages

• Languages for describing various processes

• Languages based on Set theory (OZ, B)

• Languages for describing durations

• Complex languages

16



CSP

Communicating Sequential Processes, or CSP, is a language for describing

processes and patterns of interaction between them.

It is supported by an elegant, mathematical theory, a set of proof tools, and

an extensive literature.

17



CSP

Communicating Sequential Processes, or CSP, is a language for describing

processes and patterns of interaction between them.

It is supported by an elegant, mathematical theory, a set of proof tools, and

an extensive literature.

• Each process: transition system

• Operations on processes: sequential, parallel composition

efects on states

18



CSP

General idea:

Given:

• Set of event names

• Process: behaviour pattern of an object (insofar as it can be described

in terms of the limited set of events selected as its alphabet)

19



CSP

Example:

Events: insert-coin, get-sprite, get-beer

20



CSP

Prefix:

P = a → Q (a then Q)

where a is an event and Q a process

After event a, process P behaves like process Q

21



CSP: Example

A simple vending machine which consumes one coin before breaking

(insert-coin → STOP)

22



CSP: Example

A simple vending machine that successfully serves two customers before

breaking

(insert-coint → (get-sprite → (insert-coin → (get-beer → STOP))))

23



CSP

Example: (recursive definitions)

Consider the simplest possible everlasting object, a clock which never does

anything but tick (the act of winding is deliberately ignored)

Events(CLOCK) = {tick}

Consider next an object that behaves exactly like the clock, except that it

first emits a single tick

(tick → CLOCK)

The behaviour of this object is indistinguishable from that of the original

clock. This reasoning leads to formulation of the equation

CLOCK = (tick → CLOCK)

This can be regarded as an implicit definition of the behaviour of the clock.

24



Modular Specifications: CSP-OZ-DC (COD)

COD [Hoenicke,Olderog’02] allows us to specify in a modular way:

• the control flow of a system
using Communicating Sequential Processes (CSP)

• the state space and its change
using Object-Z (OZ)

• (dense) real-time constraints over durations of events
using the Duration Calculus (DC)

25



Example: Controller for line track (RBC)

RBC

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc , req, updPos, updSpd

main
c
= ((enter → main)

✷ (leave → main)

✷ (updSpd → State1))

State1
c
= ((enter → State1)

✷ (leave → State1)

✷ (req → State2))

State2
c
= ((alloc → State3)

✷ (enter → State2)

✷ (leave → State2))

State3
c
= ((enter → State3)

✷ (leave → State3)

✷ (updPos → main))
SegmentData

train : Segment → Train [Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z [Allocated by train]

TrainData

segm : Train → Segment [Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

sd : SegmentData

td : TrainData

A

t : TrainΓtid(t) > 0

A

t1, t2 : Train | t1 6= t2Γtid(t1) 6= tid(t2)

A

s : SegmentΓprevs(nexts(s)) = s

A

s : SegmentΓnexts(prevs(s)) = s

A

s : SegmentΓsid(s) > 0

A

s : SegmentΓsid(nexts(s)) > sid(s)

A

s1, s2 : Segment | s1 6= s2Γsid(s1) 6= sid(s2)

A

s : Segment | s 6= snilΓlength(s) > d + gmax · ∆t

A

s : Segment | s 6= snilΓ0 < lmax(s) ∧ lmax(s) ≤ gmax

A

s : SegmentΓlmax(s) ≥ lmax(prevs(s)) − decmax · ∆t

A

s1, s2 : SegmentΓtid(incoming(s1)) 6= tid(train(s2))

Init

A

t : TrainΓtrain(segm(t)) = t

A

t : TrainΓnext(prev(t)) = t

A

t : TrainΓprev(next(t)) = t

A

t : TrainΓ0 ≤ pos(t) ≤ length(segm(t))

A

t : TrainΓ0 ≤ spd(t) ≤ lmax(segm(t))

A

t : TrainΓalloc(segm(t)) = tid(t)

A

t : TrainΓalloc(nexts(segm(t))) = tid(t)
∨ length(segm(t)) − bd(spd(t)) > pos(t)

A

s : SegmentΓsegm(train(s)) = s

effect updSpd

∆(spd)

A

t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

.

.

.

CSP

OZ

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

26



Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

• updSpd (speed update)

• req (request update)

• alloc (allocation update)

• updPos (position update)

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

Between these events, trains may leave or enter the track (at specific

segments), modeled by the events leave and enter.

27



Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events

with corresponding COD schemata:

CSP: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc, req, updPos, updSpd

main
c
=((updSpd→State1) State1

c
=((req→State2) State2

c
=((alloc→State3) State3

c
=((updPos→main)

✷(leave→main) ✷(leave→State1) ✷(leave→State2) ✷(leave→State3)

✷(enter→main)) ✷(enter→State1)) ✷(enter→State2)) ✷(enter→State3))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

28



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

29



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system

Data structures:

train: trains
• 2-sorted pointers

segm: segments

SegmentData
train : Segment → Train

[Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z

[Allocated by train]

TrainData
segm : Train → Segment

[Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

30



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system, and are used in the OZ part of the

specification.

• 2. Axioms: define properties of the data structures and system

parameters which do not change

• gmax : R (the global maximum speed),

• decmax : R (the maximum deceleration of trains),

• d : R (a safety distance between trains),

• Properties of the data structures used to model trains/segments

31



Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 3. Init schema. describes the initial state of the system.

• trains - doubly-linked list; placed correctly on the track segments

• all trains respect their speed limits.

• 4. Update rules specify updates of the state space executed when the

corresponding event from the CSP part is performed.

Example: Speed update
effect updSpd

∆(spd)

A

t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

32



Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.

33


