Formal Specification and Verification

Formal specification (3) 13.12.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Exam

- 20.02.2017–24.02.2017 (first week after end of lectures)
 27.02.2017–3.03.2017 (second week after end of lectures) (Attention: 27.02: Rosenmontag)
 6.03.2017–10.03.2017 (third week after end of lectures)
- 2) Before start of the lectures of the Sommersemester (18.04.2017)

Doodle poll soon.

Until now

Transition systems and program graphs

Generalizations of transition systems

- More detailed description of states: Abstract state machines
- Emphasis on processes and their interdependency: CSP
- Durations: Timed automata
- Continuous evolution + discrete control: Hybrid automata

Hybrid Automata

f : R -> R evolution of external temperature

h : R -> R evolution of heater temperature

Hybrid Automata

Hybrid automaton (HA) S = (X, Q, flow, Inv, Init, E, jump) where:

- (1) $X = \{x_1, ..., x_n\}$ finite set of real valued variables Q finite set of control modes
- (2) {flow_q | q ∈ Q} specify the continuous dynamics in each control mode (flow_q predicate over {x₁,..., x_n} ∪ {x₁,..., x_n}).
- (3) {Inv_q | $q \in Q$ } mode invariants (predicates over X).
- (4) {Init_q | $q \in Q$ } initial states for control modes (predicates over X).
- (5) E: control switches (finite multiset with elements in $Q \times Q$).
- (6) {guard_e | $e \in E$ } guards for control switches (predicates over X).
- (7) Jump conditions {jump_e | $e \in E$ }, (predicates over $X \cup X'$), where $X' = \{x'_1, \ldots, x'_n\}$ is a copy of X consisting of "primed" variables.

Linear Hybrid Automata

Atomic linear predicate: linear inequality (e.g. $3x_1 - x_2 + 7x_5 \le 4$).

Convex linear predicate: finite conjunction of linear inequalities.

A state assertion s for S: family $\{s(q) \mid q \in Q\}$, where s(q) is a predicate over X (expressing constraints which hold in state s for mode q).

Definition [Henzinger 1997] A linear hybrid automaton (LHA) is a hybrid automaton which satisfies the following requirements: (1) Linearity:

- For every $q \in Q$, flow_q, Inv_q , and $Init_q$ are convex linear predicates.

- For every $e = (q, q') \in E$, jump_e and guard_e are convex linear predicates. We assume that flow_q are conjunctions of *non-strict* inequalities.

(2) Flow independence:

For every $q \in Q$, flow_q is a predicate over X only.

Chemical plant

Two substances are mixed; they react; the resulting product is filtered out; then the procedure is repeated.

Chemical plant

Two substances are mixed; they react; the resulting product is filtered out; then the procedure is repeated.

Check:

- No overflow
- Substances in the right proportion
- If substances in wrong proportion, tank can be drained in \leq 200s.

Mode 1: Fill Temperature is low, 1 and 2 do not react. Substances 1 and 2 (possibly mixed with a small quantity of 3) are filled in the tank in equal quantities up to a margin of error.

If proportion not kept: system jumps into mode 4 (**Dump**); If the total quantity of substances exceeds level L_f (tank filled) the system jumps into mode 2 (**React**).

Mode 2: React Temparature is high. Substances 1 and 2 react. The reaction consumes equal quantities of substances 1 and 2 and produces substance 3.

Mode 3: Filter Temperature is low. Substance 3 is filtered out.

If proportion not kept: system jumps into mode 4 (**Dump**); Otherwise, if the concentration of substance 3 is below some minimal level min the system jumps into mode 1 (**Fill**).

Mode 4: Dump The content of the tank is emptied. For simplicity we assume that this happens instantaneously:

$$Inv_4 : \bigwedge_{i=1}^3 x_i = 0$$
 and $Iow_4 : \bigwedge_{i=1}^3 x_i = 0$.

The material on ASMs is not required for the exam (only the general idea) The definitions of timed automata and hybrid automata are required for the exam.

More complex specifications and specification languages

- Languages for describing various processes
- Languages based on Set theory (OZ, B)
- Languages for describing durations
- Complex languages

More complex specifications and specification languages

- Languages for describing various processes
- Languages based on Set theory (OZ, B)
- Languages for describing durations
- Complex languages

Communicating Sequential Processes, or CSP, is a language for describing processes and patterns of interaction between them.

It is supported by an elegant, mathematical theory, a set of proof tools, and an extensive literature. Communicating Sequential Processes, or CSP, is a language for describing processes and patterns of interaction between them.

It is supported by an elegant, mathematical theory, a set of proof tools, and an extensive literature.

- Each process: transition system
- Operations on processes: sequential, parallel composition

efects on states

General idea:

Given:

- Set of event names
- Process: behaviour pattern of an object (insofar as it can be described in terms of the limited set of events selected as its alphabet)

CSP

Example:

Events: insert-coin, get-sprite, get-beer

Prefix:

 $P = a \rightarrow Q$

where a is an event and Q a process

After event a, process P behaves like process Q

(a then Q)

CSP: Example

A simple vending machine which consumes one coin before breaking

(insert-coin \rightarrow STOP)

CSP: Example

A simple vending machine that successfully serves two customers before breaking

 $(insert-coint \rightarrow (get-sprite \rightarrow (insert-coin \rightarrow (get-beer \rightarrow STOP))))$

Example: (recursive definitions)

Consider the simplest possible everlasting object, a clock which never does anything but tick (the act of winding is deliberately ignored)

 $Events(CLOCK) = \{tick\}$

Consider next an object that behaves exactly like the clock, except that it first emits a single tick

$$(tick \rightarrow CLOCK)$$

The behaviour of this object is indistinguishable from that of the original clock. This reasoning leads to formulation of the equation

$$CLOCK = (tick \rightarrow CLOCK)$$

This can be regarded as an implicit definition of the behaviour of the clock.

Modular Specifications: CSP-OZ-DC (COD)

COD [Hoenicke,Olderog'02] allows us to specify in a modular way:

- the control flow of a system using Communicating Sequential Processes (CSP)
- the state space and its change using Object-Z (OZ)
- (dense) real-time constraints over durations of events using the Duration Calculus (DC)

RBC		_
<pre>method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : method leave : [ls? : Segment; lt? : Train] local chan alloc reg undPos undSnd</pre>	Train]	
$\begin{array}{rcl} \text{main} & \stackrel{c}{=} & ((enter \rightarrow \text{main}) \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ $	$\begin{array}{llllllllllllllllllllllllllllllllllll$	CSF
$\begin{array}{l} sd: SegmentData\\ td: TrainData\\\\\hline\\ \forall t: TrainTid(t) > 0\\ \forall t1, t2: Train \mid t1 \neq t2\Gamma tid(t1) \neq tid(t2)\\ \forall s: SegmentFprevs(nexts(s)) = s\\ \forall s: SegmentFrexts(prevs(s)) = s\\ \forall s: SegmentFid(s) > 0\\ \forall s: SegmentTid(nexts(s)) > sid(s)\\ \forall s1, s2: Segment \mid s1 \neq s2\Gamma sid(s1) \neq sid(s2)\\ \forall s: Segment \mid s \neq snilTlength(s) > d + gmax \cdot \Delta t\\ \forall s: Segment \mid s \neq snilT0 < lmax(s) \wedge lmax(s) \leq gmax\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) - decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax \cdot \Delta t\\ \forall s: SegmentTimax(s) \geq lmax(prevs(s)) = decmax(s) \leq lmax(prevs(s)) = decmax(s) \leq lmax(prevs(s)) = decmax(s) \geq lmax(prevs(s)) = decmax(s) \leq lmax(prevs(s)) = decmax(s) \leq lmax(prevs(s)) = decmax(s) \geq lmax(prevs(s)) = decmax(s) \leq lmax(prevs(s)) = decma$	$ \begin{array}{l} \text{Init} \\ \forall t : Train \sqcap train(segm(t)) = t \\ \forall t : Train \sqcap next(prev(t)) = t \\ \forall t : Train \sqcap prev(next(t)) = t \\ \forall t : Train \sqcap 0 \leq pos(t) \leq length(segm(t)) \\ \forall t : Train \sqcap 0 \leq spd(t) \leq lmax(segm(t)) \\ \forall t : Train \ulcorner alloc(segm(t)) = tid(t) \\ \forall t : Train \ulcorner alloc(nexts(segm(t))) = tid(t) \\ \lor length(segm(t)) - bd(spd(t)) > pos(t) \\ \forall s : Segment \ulcorner segm(train(s)) = s \\ \end{array} $	OZ
$ \begin{array}{c} \text{effect_updSpd} \\ \hline \Delta(spd) \\ \hline \forall t: Train \mid pos(t) < ength(segm(t)) - d \land spd(t) - dec. \\ \Gamma max \{0, spd(t) - decmax \cdot \Delta t\} \leq spd'(t) \leq max(segr \forall t: Train \mid pos(t) \geq ength(segm(t)) - d \land alloc(nexts(sec \ \Gamma max \{0, spd(t) - decmax \cdot \Delta t\} \leq spd'(t) \leq \min\{ max \forall t: Train \mid pos(t) \geq ength(segm(t)) - d \land \neg alloc(nexts \ \Gamma spd'(t) = \max\{0, spd(t) - decmax \cdot \Delta t\} \\ \end{array} $	$\begin{array}{l} \max \cdot \Delta t > 0 \\ m(t)) \\ gm(t))) = tid(t) \\ ((segm(t)), Imax(nexts(segm(t)))) \\ ((segm(t))) = tid(t) \end{array}$	

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

- updSpd (speed update)
- req (request update)
- alloc (allocation update)
- updPos (position update)

Between these events, trains may leave or enter the track (at specific segments), modeled by the events leave and enter.

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events with corresponding COD schemata:

CSP:

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]
method leave : [ls? : Segment; lt? : Train]
local_chan alloc, req, updPos, updSpd

 $\begin{array}{ll} \text{main} \stackrel{c}{=} ((updSpd \rightarrow State1) & State1 \stackrel{c}{=} ((req \rightarrow State2) & State2 \stackrel{c}{=} ((alloc \rightarrow State3) & State3 \stackrel{c}{=} ((updPos \rightarrow \text{main})) \\ & \Box (leave \rightarrow \text{main}) & \Box (leave \rightarrow State1) & \Box (leave \rightarrow State2) & \Box (leave \rightarrow State3) \\ & \Box (enter \rightarrow \text{main})) & \Box (enter \rightarrow State1)) & \Box (enter \rightarrow State2)) & \Box (enter \rightarrow State3)) \end{array}$

OZ part. Consists of data classes, axioms, the Init schema, update rules.

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values during runs of the system

SegmentData	
train : Segment \rightarrow Train	
req : Segment $\rightarrow \mathbb{Z}$	[Train on segment] [Requested by train]
and C . Segment $\rightarrow \mathbb{Z}$	[Allocated by train]

TrainData	
segm : Train \rightarrow Segment	
	[Train segment]
next : $\mathit{Train} \rightarrow \mathit{Train}$	[Next train]
spd : Train $ ightarrow \mathbb{R}$	[Speed]
pos : Train $ ightarrow \mathbb{R}$	[Current position]
prev : Train $ ightarrow$ Train	[Prev. train]

OZ part. Consists of data classes, axioms, the Init schema, update rules.

- 1. Data classes declare function symbols that can change their values during runs of the system, and are used in the OZ part of the specification.
- 2. Axioms: define properties of the data structures and system parameters which do not change
 - $gmax : \mathbb{R}$ (the global maximum speed),
 - $decmax : \mathbb{R}$ (the maximum deceleration of trains),
 - $d : \mathbb{R}$ (a safety distance between trains),
 - Properties of the data structures used to model trains/segments

OZ part. Consists of data classes, axioms, the Init schema, update rules.

- 3. Init schema. describes the initial state of the system.
 - trains doubly-linked list; placed correctly on the track segments
 - all trains respect their speed limits.
- 4. Update rules specify updates of the state space executed when the corresponding event from the CSP part is performed.

Example: Speed update

 $\begin{array}{l} \begin{array}{c} \begin{array}{c} \mbox{effect_updSpd_} \\ \Delta(spd) \end{array} \end{array} \\ \hline \forall t: \mbox{Train} \mid pos(t) < \mbox{length}(segm(t)) - d \land spd(t) - \mbox{decmax} \cdot \Delta t > 0 \\ & \mbox{\sc max}\{0, spd(t) - \mbox{decmax} \cdot \Delta t\} \leq \mbox{spd}^{\prime}(t) \leq \mbox{Imax}(segm(t)) \\ \forall t: \mbox{Train} \mid pos(t) \geq \mbox{length}(segm(t)) - d \land \mbox{alloc}(nexts(segm(t))) = \mbox{tid}(t) \\ & \mbox{\sc max}\{0, spd(t) - \mbox{decmax} \cdot \Delta t\} \leq \mbox{spd}^{\prime}(t) \leq \mbox{min}\{\mbox{Imax}(segm(t)), \mbox{Imax}(nexts(segm(t)))\} \\ \forall t: \mbox{Train} \mid pos(t) \geq \mbox{length}(segm(t)) - \mbox{d} \land \neg \mbox{alloc}(nexts(segm(t))) = \mbox{tid}(t) \\ & \mbox{\sc spd}^{\prime}(t) = \mbox{max}\{0, spd(t) - \mbox{decmax} \cdot \Delta t\} \end{array}$

Formal specification

- Specification for program/system
- Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required properties.