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Exam

1) 20.02.2017–24.02.2017 (first week after end of lectures)

27.02.2017–3.03.2017 (second week after end of lectures)

(Attention: 27.02: Rosenmontag)

6.03.2017–10.03.2017 (third week after end of lectures)

2) Before start of the lectures of the Sommersemester (18.04.2017)

Doodle poll soon.
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Until now

Transition systems and program graphs

Generalizations of transition systems

• More detailed description of states: Abstract state machines

• Emphasis on processes and their interdependency: CSP

• Durations: Timed automata

• Continuous evolution + discrete control: Hybrid automata
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Hybrid Automata
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Hybrid Automata

  

Normal HeatT(t) < Tm

T(t) > TM

f : R −> R  evolution of external temperature

h : R −> R  evolution of heater temperature

dT/dt(t) = −k(T(t)−f(t))

T(t) > Tm

dT/dt(t) = −k[T(t) − (h(t)+f(t))]

T(t) < TM
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Hybrid Automata

Hybrid automaton (HA) S = (X ,Q, flow, Inv, Init,E , jump) where:

(1) X = {x1, . . . , xn} finite set of real valued variables

Q finite set of control modes

(2) {flowq | q ∈ Q} specify the continuous dynamics in each control mode

(flowq predicate over {x1, . . . , xn} ∪ {
.
x1, . . . ,

.
xn}).

(3) {Invq | q ∈ Q} mode invariants (predicates over X ).

(4) {Initq | q ∈ Q} initial states for control modes (predicates over X ).

(5) E : control switches (finite multiset with elements in Q × Q).

(6) {guarde | e ∈ E} guards for control switches (predicates over X ).

(7) Jump conditions {jumpe | e ∈ E}, (predicates over X ∪ X ′), where

X ′ = {x′1, . . . , x
′

n} is a copy of X consisting of “primed” variables.
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Linear Hybrid Automata

Atomic linear predicate: linear inequality (e.g. 3x1 − x2 + 7x5 ≤ 4).

Convex linear predicate: finite conjunction of linear inequalities.

A state assertion s for S : family {s(q) | q ∈ Q}, where s(q) is a predicate

over X (expressing constraints which hold in state s for mode q).

Definition [Henzinger 1997] A linear hybrid automaton (LHA) is a

hybrid automaton which satisfies the following requirements:

(1) Linearity:

- For every q ∈ Q, flowq , Invq , and Initq are convex linear predicates.

- For every e = (q, q′) ∈ E , jumpe and guarde are convex linear predicates.

We assume that flowq are conjunctions of non-strict inequalities.

(2) Flow independence:

For every q ∈ Q, flowq is a predicate over
.
X only.
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Example

Inv

flow

Inv

flow ReactFill

Filter Dump
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4 3

3

Inv Inv

flowflow

Chemical plant

Two substances are mixed; they react;

the resulting product is filtered out;

then the procedure is repeated.
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Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4
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1
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Inv Inv

flowflow

Chemical plant

Two substances are mixed; they react;

the resulting product is filtered out;

then the procedure is repeated.

Check:

• No overflow

• Substances in the right proportion

• If substances in wrong proportion,

tank can be drained in ≤ 200s.
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Example

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Mode 1: Fill Temperature is low, 1 and 2 do not react.

Substances 1 and 2 (possibly mixed with a small quantity of 3)

are filled in the tank in equal quantities up to a margin of error.

Inv1 x1 + x2 + x3 ≤ Lf ∧
∧3

i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ min

flow1
.
x1 ≥dmin∧

.
x2 ≥dmin∧

.
x3 =0 ∧ −δa≤

.
x1 −

.
x2 ≤δa

If proportion not kept: system jumps into mode 4 (Dump);

If the total quantity of substances exceeds level Lf (tank filled)

the system jumps into mode 2 (React).
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Example

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump
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Inv

flow

Mode 2: React Temparature is high. Substances 1 and 2 react.

The reaction consumes equal quantities of substances 1 and 2

and produces substance 3.

Inv2 Lf ≤ x1 + x2 + x3 ≤ Loverflow ∧
∧3

i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ max

flow2
.
x1≤ −dmin∧

.
x2≤ −dmin∧

.
x3≥ dmin

∧
.
x1=

.
x2 ∧

.
x3 +

.
x1 +

.
x2= 0

If the proportion between substances 1 and 2 is not kept

the system jumps into mode 4 (Dump);

If the total quantity of substances 1 and 2 is below some minimal

level min the system jumps into mode 3 (Filter).

11



Example

Inv

flow

Inv

flow ReactFill

Filter Dump
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Inv

flow

Inv

flow

Mode 3: Filter Temperature is low. Substance 3 is filtered out.

Inv3 x1 + x2 + x3 ≤ Loverflow ∧
∧3

i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ x3 ≥ min

flow3
.
x1= 0∧

.
x2= 0 ∧

.
x3≤ −dmin

If proportion not kept: system jumps into mode 4 (Dump);

Otherwise, if the concentration of substance 3 is below some

minimal level min the system jumps into mode 1 (Fill).
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Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4
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Inv Inv

flowflow

Mode 4: Dump The content of the tank is emptied.

For simplicity we assume that this happens instantaneously:

Inv4 :
∧3

i=1 xi = 0 and flow4 :
∧3

i=1

.
xi= 0.
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Remark

The material on ASMs is not required for the exam (only the general idea)

The definitions of timed automata and hybrid automata are required for the

exam.
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More complex specifications and specification

languages

• Languages for describing various processes

• Languages based on Set theory (OZ, B)

• Languages for describing durations

• Complex languages

15



More complex specifications and specification

languages

• Languages for describing various processes

• Languages based on Set theory (OZ, B)

• Languages for describing durations

• Complex languages
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CSP

Communicating Sequential Processes, or CSP, is a language for describing

processes and patterns of interaction between them.

It is supported by an elegant, mathematical theory, a set of proof tools, and

an extensive literature.
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CSP

Communicating Sequential Processes, or CSP, is a language for describing

processes and patterns of interaction between them.

It is supported by an elegant, mathematical theory, a set of proof tools, and

an extensive literature.

• Each process: transition system

• Operations on processes: sequential, parallel composition

efects on states
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CSP

General idea:

Given:

• Set of event names

• Process: behaviour pattern of an object (insofar as it can be described

in terms of the limited set of events selected as its alphabet)
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CSP

Example:

Events: insert-coin, get-sprite, get-beer

20



CSP

Prefix:

P = a → Q (a then Q)

where a is an event and Q a process

After event a, process P behaves like process Q
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CSP: Example

A simple vending machine which consumes one coin before breaking

(insert-coin → STOP)
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CSP: Example

A simple vending machine that successfully serves two customers before

breaking

(insert-coint → (get-sprite → (insert-coin → (get-beer → STOP))))
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CSP

Example: (recursive definitions)

Consider the simplest possible everlasting object, a clock which never does

anything but tick (the act of winding is deliberately ignored)

Events(CLOCK) = {tick}

Consider next an object that behaves exactly like the clock, except that it

first emits a single tick

(tick → CLOCK)

The behaviour of this object is indistinguishable from that of the original

clock. This reasoning leads to formulation of the equation

CLOCK = (tick → CLOCK)

This can be regarded as an implicit definition of the behaviour of the clock.
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Modular Specifications: CSP-OZ-DC (COD)

COD [Hoenicke,Olderog’02] allows us to specify in a modular way:

• the control flow of a system
using Communicating Sequential Processes (CSP)

• the state space and its change
using Object-Z (OZ)

• (dense) real-time constraints over durations of events
using the Duration Calculus (DC)
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Example: Controller for line track (RBC)

RBC

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc , req, updPos, updSpd

main
c
= ((enter → main)

✷ (leave → main)

✷ (updSpd → State1))

State1
c
= ((enter → State1)

✷ (leave → State1)

✷ (req → State2))

State2
c
= ((alloc → State3)

✷ (enter → State2)

✷ (leave → State2))

State3
c
= ((enter → State3)

✷ (leave → State3)

✷ (updPos → main))
SegmentData

train : Segment → Train [Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z [Allocated by train]

TrainData

segm : Train → Segment [Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

sd : SegmentData

td : TrainData

A

t : TrainΓtid(t) > 0

A

t1, t2 : Train | t1 6= t2Γtid(t1) 6= tid(t2)

A

s : SegmentΓprevs(nexts(s)) = s

A

s : SegmentΓnexts(prevs(s)) = s

A

s : SegmentΓsid(s) > 0

A

s : SegmentΓsid(nexts(s)) > sid(s)

A

s1, s2 : Segment | s1 6= s2Γsid(s1) 6= sid(s2)

A

s : Segment | s 6= snilΓlength(s) > d + gmax · ∆t

A

s : Segment | s 6= snilΓ0 < lmax(s) ∧ lmax(s) ≤ gmax

A

s : SegmentΓlmax(s) ≥ lmax(prevs(s)) − decmax · ∆t

A

s1, s2 : SegmentΓtid(incoming(s1)) 6= tid(train(s2))

Init

A

t : TrainΓtrain(segm(t)) = t

A

t : TrainΓnext(prev(t)) = t

A

t : TrainΓprev(next(t)) = t

A

t : TrainΓ0 ≤ pos(t) ≤ length(segm(t))

A

t : TrainΓ0 ≤ spd(t) ≤ lmax(segm(t))

A

t : TrainΓalloc(segm(t)) = tid(t)

A

t : TrainΓalloc(nexts(segm(t))) = tid(t)
∨ length(segm(t)) − bd(spd(t)) > pos(t)

A

s : SegmentΓsegm(train(s)) = s

effect updSpd

∆(spd)

A

t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

.

.

.

CSP

OZ

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)
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Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

• updSpd (speed update)

• req (request update)

• alloc (allocation update)

• updPos (position update)

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

Between these events, trains may leave or enter the track (at specific

segments), modeled by the events leave and enter.
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Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events

with corresponding COD schemata:

CSP: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc, req, updPos, updSpd

main
c
=((updSpd→State1) State1

c
=((req→State2) State2

c
=((alloc→State3) State3

c
=((updPos→main)

✷(leave→main) ✷(leave→State1) ✷(leave→State2) ✷(leave→State3)

✷(enter→main)) ✷(enter→State1)) ✷(enter→State2)) ✷(enter→State3))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.
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Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system

Data structures:

train: trains
• 2-sorted pointers

segm: segments

SegmentData
train : Segment → Train

[Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z

[Allocated by train]

TrainData
segm : Train → Segment

[Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]
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Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system, and are used in the OZ part of the

specification.

• 2. Axioms: define properties of the data structures and system

parameters which do not change

• gmax : R (the global maximum speed),

• decmax : R (the maximum deceleration of trains),

• d : R (a safety distance between trains),

• Properties of the data structures used to model trains/segments
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Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 3. Init schema. describes the initial state of the system.

• trains - doubly-linked list; placed correctly on the track segments

• all trains respect their speed limits.

• 4. Update rules specify updates of the state space executed when the

corresponding event from the CSP part is performed.

Example: Speed update
effect updSpd

∆(spd)

A

t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}
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Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.
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