(1

sat(E(9Up))

• $W := nat(q) = {s_i}$

* X:=S=?50,51,523

Y:= pat (p) = {50}

X = { So }

· Y:= YU(Wn Me > (Y)) = {So, Si}

meg (Y) = {S1, S2}

X = Y : = X : = { So, S, 3

· Y:=40(wpme=(41)= (20,5,3.

 $\mathcal{M} \ni (\gamma) := \{S_2, S_l, \frac{2}{2}\}$ (without s0)

X=Y $coat(e(q Up)) = {So,Si3.}$

Solution using OBDDs.

Solution using OBDDs.										
(sets)	Formula	OBDD		Formula	OBAD					
φ	448	O	S	(pn79)V	P					
{So}	P179	6 P 1 0 C 1 9 C 1 1		(7PN9)V (7PN79) =(PN79)V7P	0 0 0					
{si3	7019	1 P 0 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		= Janja.						
{523	7p179	P0 0/4 1 9 0/4 10								
{5,2,2}	(p179) v (7p19)	(G) (P) (9)	(9) (9)							
351,523	GP.	الله الله الله الله الله الله الله الله		0.						

		,			
	P	9	P	91	-
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	1
	0	0	1	1	0
	0	11	10	0	0
	0	1	0	1	1
	0	1	1	0	1
-	0	1	1	1	0
	1	0	0	O	1
	1	0	0	1	0
	1	0	1	0	,
	1	0	1	1	•
	1	1	0	D	į.
	1	1	0	1	1
	1	1	11	0	(
	-(1			
	1	1	1	1	0.
				 	

7p17q17p'1q'

7p1917p11.91 7p191p11791 p17917p11791.

ordering [P, P, 9,9]

Bw

$$X := S$$
 $(p) = (So3)$

Bx # By (i.e. X = Y); X := Y.

Rename variables m By to princed versions

Compute OBOD for exists (p',q', apply (1, B), By'))

(1)
$$B_f = apply(\Lambda, B_{\rightarrow}, B_{\uparrow})$$
:

Since B_X and B_Y are different (hence X and Y are different) one more iteration is necessary:

 $Y := Y \; union \; (W \; intersection \; pre_exists(Y))$

Complete the last steps of the algorithm to compute the OBDD describing $\mathsf{sat}(\mathsf{E}(\mathsf{qUp})).$