Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
13. November 2016

Exercises for "Formal Specification and Verification"
 Exercise sheet 4

Exercise 4.1:

Consider the boolean formula discussed in Exercise 3, $F:=(P \wedge((Q \wedge \neg R) \vee(\neg Q \wedge R)))$. Let B_{F} be the OBDD for F constructed previously. Construct the following OBDDs:
(a) restrict $\left(0, R, B_{F}\right)$;
(b) restrict $\left(1, R, B_{F}\right)$;
(c) exists $\left(R, B_{F}\right)$.

Exercise 4.2:

Let $\Sigma=(\Omega, \Pi)$ be a signature, where $\Omega=\{f / 2, g / 1, a / 0, b / 0\}$ and $\Pi=\{p / 2\}$; let X be the set of variables $\{x, y, z\}$. Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae, which are neither?
(a) $\neg p(g(a), f(x, y))$
(b) $f(x, x) \approx x$
(c) $p(f(x, a), x) \vee p(a, b)$
(d) $p(\neg g(x), g(y))$
(e) $\neg p(f(x, y))$
(f) $p(a, b) \wedge p(x, y) \wedge y$
(g) $\exists y(\neg p(f(y, y), y))$
(h) $\forall x \forall y(g(p(x, y)) \approx g(x))$

Exercise 4.3:

Let $\Sigma=(S, \Omega, \Pi)$ be a many-sorted signature, where $S=\{$ int, list $\}, \Omega=\{$ cons, car, cdr, nil, $b\}$ and $\Pi=\{p\}$ with the following arities:

$$
\begin{aligned}
& a(\text { cons })=\text { int, list } \rightarrow \text { list } \quad a(\text { car })=\text { list } \rightarrow \text { int } \quad a(\mathrm{cdr})=\text { list } \rightarrow \text { list } \\
& a(\mathrm{nil})=\rightarrow \text { list } \\
& a(b)=\rightarrow \text { int } \\
& \begin{array}{ll}
\text { i.e. nil is a constant of sort list }) \\
a(p)=\text { int }, \text { list. } & \text { (i.e. } b \text { is a constant of sort int })
\end{array}
\end{aligned}
$$

Let $X_{\text {int }}$ be the set of variables of sort int containing $\{i, j, k\}$, and let $X_{\text {list }}$ be the set of variables of sort list containing $\{x, y, z\}$. Let $X=\left\{X_{\text {int }}, X_{\text {list }}\right\}$.

Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae (in first-order logic with equality, where equality between terms of sort int is \approx_{i} and equality between terms of sort list is \approx_{l}), which are neither?
(a) $\operatorname{cons}(\operatorname{cons}(b$, nil $)$, nil $)$
(b) $\operatorname{cons}(b, \operatorname{cons}(b$, nil $))$
(c) $\neg p(b$, cons $(b$, cons $(b$, nil $)))$
(d) $\neg p(\operatorname{cons}(b$, nil $), \operatorname{cons}(b, \operatorname{cons}(b$, nil $)))$
(e) $\operatorname{cons}(b, \operatorname{cons}(b$, nil $)) \approx_{l} \operatorname{cons}(\operatorname{cons}(x, b)$, nil $)$
(f) $\operatorname{cons}(i, \operatorname{cons}(b$, nil $)) \approx j$
(g) $p(\neg \operatorname{car}(x), x)$
(h) $\neg p(\operatorname{car}(x), x) \vee p(j, \operatorname{cons}(j, x))$
(i) $\neg p(b, x) \vee p(b, \operatorname{cons}(b, x)) \vee b$
(j) $\forall i$: int, $\forall x$: list $\left(\operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) \approx_{l} x\right)$
(k) $\exists i$: int, $\forall y$: list $\left(\operatorname{cons}(b, p(x, y)) \approx_{l} \operatorname{cdr}(y)\right)$

Exercise 4.4:

Compute the results of the following substitutions:
(a) $f(g(x), x)[g(a) / x]$
(b) $p(f(y, x), g(x))[x / y]$
(c) $\forall y(p(f(y, x), g(y)))[x / y]$
(d) $\forall y(p(f(y, x), x))[y / x]$
(e) $\forall y(p(f(z, g(y)), g(x)) \vee \exists z(g(z) \approx y))[g(b) / z]$
(f) $\exists y(f(x, y) \approx x \rightarrow \forall x(f(x, y) \approx x))[g(y) / y, g(z) / x]$

Exercise 4.5:

Let $\Sigma=(\Omega, \Pi)$, where $\Omega=\{0 / 0, s / 1,+/ 2\}$ and $\Pi=\emptyset$ (i.e. the only predicate symbol is \approx). Consider the following formulae in the signature Σ :

1. $F_{1}=\forall x(x+0 \approx x)$
2. $F_{2}=\forall x, y(x+s(y) \approx s(x+y))$
3. $F_{3}=\forall x, y \quad(x+y \approx y+x)$.

Find a Σ-structure in which F_{1} and F_{2} are valid but F_{3} is not.

Please submit your solution until Sunday, November 18, 2018 at 17:00. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework FSV" in the subject.
- Put it in the box in Room B 222 .

